• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 23, Pages: 2311-2318

Original Article

Cloud-based energy efficient smart street lighting system

Received Date:17 May 2020, Accepted Date:21 June 2020, Published Date:04 July 2020


Background/Objectives: Pakistan is experiencing significant energy crises for the last two decades. The increasing power demand cannot be controlled with traditional energy techniques. The conventional street lighting system remains ON all over the night. Consequently, a huge amount of energy is wasted. To overcome the shortage of energy, an efficient smart lighting system is proposed. Methods: The prime thought to accomplish is ``Energy on-demand'' i.e. handed-in wherever, whenever required. To achieve this goal, the cloudbased smart street lighting system provides a feasible solution. The proposed system uses an Arduino and its various shields based on a movement-based actuation system like Light Detection and Ranging (LiDAR), automate the street lighting system. This design is executed and implemented on a one-way road and its results are carried out at three different scenario cases. The analysis is done by a decision-making module that obtains results from the sensor (LiDAR). Findings: The availability of low cost advanced devices like LiDAR, Arduino, cloud storage, and the accessibility of wired and wireless connection, smart street lighting system becomes a reality. The proposed system is beneficial to overcome the CO2 emission. Further, it will also be helpful to avoid the unnecessary consumption of streetlight as well as to reduce power utilization and save energy up to 99%. Applications: This proposed framework has an immense potential to revolutionize street lighting and to achieve the demand for a smart street lighting system that is easy to maintain, durable, and reliable.

Keywords: IoT; cloud; LiDAR; street lighting system; Arduino


  1. Sudheer K, Madhurita D, Chandana A, Thanesh M, Babu MK. Intelligent Street Light System For Smart Cities. International Journal of Applied Science and Computations. 2019;6(5).
  2. Ali S, Shah N. Electricity Crisis in Pakistan: Reception & Adoption of Energy Saving Campaign Messages by PEPCO. Pakistan Journal of Social Sciences. 2012;(1) 32.
  3. Pakistan “. Electricity Consumption: Street Light: Economic Indicators: CEIC.” Pakistan | Electricity Consumption: Street Light | Economic Indicators. (accessed ) Available from: www.ceicdata.com/en/pakistan/energy-consumption-and-supplies-annual/electricity-consumption-street-light
  4. Gagliardi G, Casavola A, Lupia M, Cario G, Tedesco F, Scudo FL, et al. A smart city adaptive lighting system. In: In 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). p. 258–263.
  5. Leccese F, Leonowicz Z. Intelligent wireless street lighting system. 2012 11th International Conference on Environment and Electrical Engineering. 2012;p. 958–961.
  6. Shahzad G, Yang H, Ahmad AW, Lee C. Energy-Efficient Intelligent Street Lighting System Using Traffic-Adaptive Control. IEEE Sensors Journal. 2016;16(13):5397–5405. Available from: https://dx.doi.org/10.1109/jsen.2016.2557345
  7. Byun J, Hong I, Lee B, Park S. Intelligent household LED lighting system considering energy efficiency and user satisfaction. IEEE Transactions on Consumer Electronics. 2013;59(1):70–76. Available from: https://dx.doi.org/10.1109/tce.2013.6490243
  8. Rao A, Konnur A. Street light automation system using arduino uno. Int. J. Innov. Res. Comput. Commun. Eng. 2017;5:16499–16507.
  9. Wu Y, Shi C, Zhang X, Yang W. Design of new intelligent street light control system. In: In IEEE ICCA 2010. IEEE. p. 1423–1427.
  10. Wang H, Lou X, Cai Y, Li Y, Chen L. Real-time vehicle detection algorithm based on vision and lidar point cloud fusion. Journal of Sensors. 2019.
  11. Wang H, Wang B, Liu B, Meng X, Yang G. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Robotics and Autonomous Systems. 2017;88:71–78. Available from: https://doi.org/10.1016/j.robot.2016.11.014
  12. Prakash PV, Rajendra D. Internet of things based intelligent street lighting system for smart city. International journal of innovative research in science, engineering and technology. 2016;5(5).
  13. Yang YS, Lee SH, Chen GS, Yang CS, Huang YM, Hou TW. An Implementation of High Efficient Smart Street Light Management System for Smart City. IEEE Access. 2020;8:38568–38585.
  14. Pasolini G, Toppan P, Zabini F, Castro CD, Andrisano O. Design, Deployment and Evolution of Heterogeneous Smart Public Lighting Systems. Applied Sciences. 2019;9(16):3281. Available from: https://dx.doi.org/10.3390/app9163281
  15. Jagadeesh YM, Akilesh S, Karthik S, Prasanth. Intelligent Street Lights. Procedia Technology. 2015;21:547–551. Available from: https://dx.doi.org/10.1016/j.protcy.2015.10.050
  16. Louis L. WORKING PRINCIPLE OF ARDUINO AND USING IT. International Journal of Control, Automation, Communication and Systems (IJCACS). 2016;1(2):21–29.
  17. Grisetti G, Kummerle R, Stachniss C, Burgard W. A Tutorial on Graph-Based SLAM. IEEE Intelligent Transportation Systems Magazine. 2010;2(4):31–43. Available from: https://dx.doi.org/10.1109/mits.2010.939925
  18. Redmon J, Divvala S, Girshick R, Farhadi A. IEEE You only look once: Unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). p. 779–788.


© 2020 Umar, Gill, Shaikh, Rizwan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.