• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 4, Pages: 351-360

Original Article

CNN approach for medical image authentication

Received Date:29 October 2020, Accepted Date:13 January 2021, Published Date:02 February 2021


Objectives: To propose a Non-blind watermarking based on a Convolutional Neural Network (CNN). Methodology: An iterative learning model is proposed to ensure robustness and imperceptibility of watermarking process. In the first step, Stationary Wavelet Transformation (SWT) and Singular Value Decomposition (SVD) are used for the initial transformation and for embedding. The neural network is used to determine the relationship between host and watermarked image to extract the watermark. Findings: We have implemented our algorithm using Magnetic Resonant Imaging (MRI) and Computerized Tomography (CT), Mammogram and Retinal Images with different attacks and proved to have good robustness with Normalized Correlation coefficient (NC) value of 0.99 and invisibility feature with Peak Signal to Noise Ratio (PSNR) of 43.77 DB. We have compared our method with that of others and it proves to be good in terms of PSNR and NC values. Novelty/Application: This study provides a novel method to train CNN with both watermarked , attacked images and to classify them.

Keywords: Medical image authentication; stationary wavelet transform; convolutional neural networks; singular value decomposition


  1. Boroumand M, Chen M, Fridrich J. Deep Residual Network for Steganalysis of Digital Images. IEEE Transactions on Information Forensics and Security. 2019;14(5):1181–1193. Available from: https://dx.doi.org/10.1109/tifs.2018.2871749
  2. Assem M. A “A time-efficient optimization for robust image watermarking using Machine Learning. International Journal Expert Systems with Applications. 2018;p. 197–210. Available from: https://doi.org/10.1016/j.eswa.2018.02.002
  3. Kumar P, Sharma AK. A Robust Image Watermarking Technique using feature Optimization & Cascaded Neural Network. International Journal of Computer Science and Information Security. 2019;17(8):36–45. Available from: https://sites.google.com/site/ijcsis/
  4. Islam MS, Ullah MA, Dhar JP. An imperceptible & robust digital image watermarking scheme based on DWT, entropy and neural network. Karbala International Journal of Modern Science. 2019;5(1):36–44. Available from: https://dx.doi.org/10.33640/2405-609x.1068
  5. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights into Imaging. 2018;9(4):611–629. Available from: https://dx.doi.org/10.1007/s13244-018-0639-9
  6. Zhen W, Mo S, Jin X, Qu Y, Dengx F, Shuaix J, et al. Robust and High Capacity Watermarking for Image-Based on DWT-SVD and CNN. In: IEEE Conference Industrial Electronics and Applications (ICIEA). p. 1233–1237.
  7. Chopra D, Gupta P, BCGS, Gupta A. Lsb Based Digital Image Watermarking For Gray Scale Image. IOSR Journal of Computer Engineering. 2012;6(1):36–41. Available from: https://dx.doi.org/10.9790/0661-0613641
  8. Zubov IG, Lysenko NV, Labkov GM, Labkov. Detection of the Information hidden in the image by Convolutional Neural Networks. In: IEEE Conference. p. 393–394.
  9. AtoanyFierro-Radilla, Nakano-Miyatake M, Cedillo-Hernandez M, Cleofas-Sanchez L, Perez-Meana H. A Robust Image Zero-watermarking using Convolutional Neural Networks. International Workshop on Biometrics and Forensics (IWBF). ;p. 1–6. Available from: https://doi.org/10.1109/IWBF.2019.8739245
  10. Anand A, Singh AK, Zhihan V, Bhatnagar G. Compression-then-Encryption based Secure Watermarking Technique for Smart Healthcare System. IEEE Computer Society. Available from: https://doi.org/10.1109/mmul.2020.2993269
  11. Available from: http://www.isi.uu.nl/Research/Databases/DRIVE/ (accessed )
  12. Mammoimage database. Available from: https://www.mammoimage.org/databases/ (accessed )
  13. Jane O, Elbaşi E, İlk HG. Hybrid Non-Blind Watermarking Based on DWT and SVD. (Vol. 12, pp. 750-761) Universidad Nacional Autonoma de Mexico. 2014.
  14. Vathsala MK, Holi G. RNN based machine translation and transliteration for Twitter data. International Journal of Speech Technology. 2020;23(3):499–504. Available from: https://dx.doi.org/10.1007/s10772-020-09724-9


© 2021 Madhu & Holi.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.