• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 22, Pages: 1864-1893

Original Article

Comparative Study of Solar PV System Performance under Partial Shaded Condition Utilizing Different Control Approaches

Received Date:22 May 2021, Accepted Date:05 June 2021, Published Date:01 July 2021

Abstract

Objectives: To improve the reduction of photovoltaic system's power output under various resistance load. Additionally, partial shaded conditions (PSCs) lead to several peaks on photovoltaic (PV) curves, which decrease conventional techniques' efficiency and in these (PSCs), standard equations might not be implemented entirely, therefore, the mathematical model of PV array is compulsory to modify and re-establish as well as it is compulsory to apply some methods based on artificial intelligence to develop the performance of traditional techniques. Methods: This work has modified and re-established the mathematical model of PV array under (PSCs) which are recognized and verified using MATLAB/Simulink environment. Also, heuristic algorithms (Cuckoo Search Algorithm (CSA) and Modified Particle Swarm Optimization (MPSO)) have been suggested and applied with PV system to promote output power under various resistance load, varying weather conditions and (PSCs). Moreover, these suggested algorithms can improve the dynamic response and steady-state PV systems' performance simultaneously and effectively comparing to the Modified Perturb and Observe (MP&O) and Artificial Neural Network (ANN) methods. Findings: The proposed methods are examined under various resistance load, several scenarios for (PSCs) and non-uniform irradiation levels to investigate its effectiveness. The results ensure that proposed tracker based on Cuckoo Search Algorithm (CSA) can distinguish between the global and local maximum peaks of PV system effectively with efficiency of 99% comparing to other MPPT approaches. So, all approaches mentioned above are implemented to improve the output power of PV system in Yemen. Novelty: Modified and re-established the mathematical model of PV array under (PSCs) and also, proposed a heuristic algorithms (CSA) and (MPSO)) to apply with PV system to promote maximum output power under various resistance load, varying weather conditions and (PSCs) as well as to improve the performance of (MP&O) and (ANN) methods.

Keywords

PV Systems, Maximum Power Point Tracking (MPPT), Uniform Irradiation, Partial Shading, Cuckoo Search Algorithm (CSA), MPSO, ANN, and MP&O

References

  1. Nayak PK, Mahesh S, Snaith HJ, Cahen D. Photovoltaic solar cell technologies: analysing the state of the artNature Reviews Materials2019;4(4):269285. Available from: https://dx.doi.org/10.1038/s41578-019-0097-0
  2. Kabir S, Bansal R, Nadarajah M. Effects of partial shading on photovoltaic with advanced MPPT scheme2012 IEEE International Conference on Power and Energy (PECon)2012;p. 354359. Available from: 10.1109/PECon.2012.6450237
  3. Xie Y, Weng Q. World energy consumption pattern as revealed by DMSP-OLS nighttime light imageryGIScience & Remote Sensing2016;53:265282. Available from: https://dx.doi.org/10.1080/15481603.2015.1124488
  4. Mora SBS, Paipa EAL, Serrano MAL, Márquez LFB. Performance comparison between PWM and MPPT charge controllersScientia et technica2019;24(1):611. Available from: https://dx.doi.org/10.22517/23447214.20681
  5. Ljouad T, Amine A, Rziza M. A hybrid mobile object tracker based on the modified Cuckoo Search algorithm and the Kalman FilterPattern Recognition2014;47(11):35973613. Available from: https://dx.doi.org/10.1016/j.patcog.2014.04.003
  6. Shlesinger MF, Klafter J. Lévy walks versus Lévy flights. In: On growth and form. (pp. 279-283Springer. 1986.
  7. Yang XS, Deb S. Engineering optimisation by cuckoo searchInternational Journal of Mathematical Modelling and Numerical Optimisation2010;1(4):330343. Available from: 10.1504/ijmmno.2010.035430
  8. Yang XS, Deb S. Multiobjective cuckoo search for design optimizationComputers & Operations Research2013;40(6):16161624. Available from: 10.1016/j.cor.2011.09.026
  9. Ibrahim AW, Ding M, Jin X, Dai X, Sarhan MA, Shafik MB, et al. Artificial neural network based maximum power point tracking for PV systemChinese Control Conference (CCC)2019;p. 65596564. Available from: 10.23919/chicc.2019.8865275
  10. Esram T, Chapman PL. Comparison of Photovoltaic Array Maximum Power Point Tracking TechniquesIEEE Transactions on Energy Conversion2007;22(2):439449. Available from: https://dx.doi.org/10.1109/tec.2006.874230
  11. Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of Perturb and Observe Maximum Power Point Tracking MethodIEEE Transactions on Power Electronics2005;20:963973. Available from: https://dx.doi.org/10.1109/tpel.2005.850975
  12. Koutroulis E, Kalaitzakis K, Voulgaris NC. Development of a microcontroller-based, photovoltaic maximum power point tracking control systemIEEE Transactions on Power Electronics2001;16(1):4654. Available from: https://dx.doi.org/10.1109/63.903988
  13. Lin CH, Huang CH, Du YC, Chen JL. Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance methodApplied Energy2011;88(12):48404847. Available from: 10.1016/j.apenergy.2011.06.024
  14. Masoum MAS, Dehbonei H, Fuchs EF. Theoretical and experimental analyses of photovoltaic systems with voltageand current-based maximum power-point trackingIEEE Transactions on Energy Conversion2002;17(4):514522. Available from: https://dx.doi.org/10.1109/tec.2002.805205
  15. Ahmad J. A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays2010 2nd International Conference on Software Technology and Engineering2010;1:1247. Available from: 10.1109/ICSTE.2010.5608868
  16. Esram T, Kimball JW, Krein PT, Chapman PL, Midya P. Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation controlIEEE Transactions on Power Electronics2006;21(5):12821291. Available from: https://dx.doi.org/10.1109/tpel.2006.880242
  17. Papaioannou IT, Purvins A. Mathematical and graphical approach for maximum power point modellingApplied Energy2012;91(1):5966. Available from: https://dx.doi.org/10.1016/j.apenergy.2011.09.005
  18. Al-Amoudi A, Zhang L. Optimal control of a grid-connected PV system for maximum power point tracking and unity power factorInstitution of Electrical Engineers1998;p. 8085. Available from: 10.1049/cp:19980504
  19. Piazza MCD, Vitale G. Photovoltaic field emulation including dynamic and partial shadow conditionsApplied Energy2010;87(3):814823. Available from: https://dx.doi.org/10.1016/j.apenergy.2009.09.036
  20. Kamran M, Mudassar M, Fazal MR, Asghar MU, Bilal M, Asghar R. Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic systemJournal of King Saud University-Engineering Sciences2018. Available from: 10.1016/j.jksues.2018.04.006
  21. Radjai T, Gaubert JP, Rahmani L, Mekhilef S. Experimental verification of P&O MPPT algorithm with direct control based on Fuzzy logic control using CUK converterInternational Transactions on Electrical Energy Systems2015;25(12):34923508. Available from: https://dx.doi.org/10.1002/etep.2047
  22. Tey KS, Mekhilef S. Modified Incremental Conductance Algorithm for Photovoltaic System Under Partial Shading Conditions and Load VariationIEEE Transactions on Industrial Electronics2014;61(10):53845392. Available from: https://dx.doi.org/10.1109/tie.2014.2304921
  23. Safari A, Mekhilef S. Simulation and Hardware Implementation of Incremental Conductance MPPT With Direct Control Method Using Cuk ConverterIEEE Transactions on Industrial Electronics2011;58(4):11541161. Available from: https://dx.doi.org/10.1109/tie.2010.2048834
  24. Salman S, AI X, WU Z. Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200W PV systemProtection and Control of Modern Power Systems2018;3:18. Available from: https://dx.doi.org/10.1186/s41601-018-0099-8
  25. Shang L, Guo H, Zhu W. An improved MPPT control strategy based on incremental conductance algorithmProtection and Control of Modern Power Systems2020;5:18. Available from: https://dx.doi.org/10.1186/s41601-020-00161-z
  26. Chaibi Y, Allouhi A, Salhi M, El-jouni A. Annual performance analysis of different maximum power point tracking techniques used in photovoltaic systemsProtection and Control of Modern Power Systems2019;4:110. Available from: https://dx.doi.org/10.1186/s41601-019-0129-1
  27. El-Khozondar HJ, El-Khozondar RJ, Matter K, Suntio T. A review study of photovoltaic array maximum power tracking algorithmsRenewables: Wind, Water, and Solar2016;3(1):18. Available from: https://dx.doi.org/10.1186/s40807-016-0022-8
  28. Shang L, Zhu W, Li P, Guo H. Maximum power point tracking of PV system under partial shading conditions through flower pollination algorithmProtection and Control of Modern Power Systems2018;3:17. Available from: 10.1186/s41601-018-0111-3
  29. Soon TK, Mekhilef S. A Fast-Converging MPPT Technique for Photovoltaic System Under Fast-Varying Solar Irradiation and Load ResistanceIEEE Transactions on Industrial Informatics2015;11(1):176186. Available from: https://dx.doi.org/10.1109/tii.2014.2378231
  30. Veerachary M, Yadaiah N. ANN based peak power tracking for PV supplied DC motorsSolar Energy2000;69(4):343350. Available from: https://dx.doi.org/10.1016/s0038-092x(00)00085-2
  31. Larbes C, Cheikh SMA, Obeidi T, Zerguerras A. Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic systemRenewable Energy2009;34(10):20932100. Available from: https://dx.doi.org/10.1016/j.renene.2009.01.006
  32. Moyo RT, Tabakov PY, Moyo S. Design and Modeling of the ANFIS-Based MPPT Controller for a Solar Photovoltaic SystemJournal of Solar Energy Engineering2021;143(4):143. Available from: https://dx.doi.org/10.1115/1.4048882
  33. Sarhan MA, Ding M, Chen X, Ou Y, Wu M. ANFIS Control for Photovoltaic Systems with DC-DC ConvertersProceedings of the 2017 International Conference on Automation, Control and Robots2017;p. 914. Available from: 10.1145/3175516.3175522
  34. Mirjalili S, Mirjalili SM, Hatamlou A. Multi-Verse Optimizer: a nature-inspired algorithm for global optimizationNeural Computing and Applications2016;27(2):495513. Available from: https://dx.doi.org/10.1007/s00521-015-1870-7
  35. Chauhan U, Singh V, Kumar B, Rani A. An improved MVO assisted global MPPT algorithm for partially shaded PV systemJournal of Intelligent & Fuzzy Systems2020;38(5):67156726. Available from: https://dx.doi.org/10.3233/jifs-179749
  36. Mohanty S, Subudhi B, Ray PK. A New MPPT Design Using Grey Wolf Optimization Technique for Photovoltaic System Under Partial Shading ConditionsIEEE Transactions on Sustainable Energy2016;7(1):181188. Available from: https://dx.doi.org/10.1109/tste.2015.2482120
  37. Agwa AM, Mahmoud IY. Photovoltaic Maximum Power Point Tracking by Artificial Neural NetworksJournal of Multidisciplinary Engineering Science and Technology2017;4(1). Available from: https://doi.org/10.1155/2012/506709
  38. Matagne E, Chenni R, Bachtiri R. A photovoltaic cell model based on nominal data only2007 International conference on power engineering, energy and electrical drives2007;p. 562565. Available from: 10.1109/powereng.2007.4380173
  39. Rashid MH. Simulation of Power Electronic Circuits. In: Modern Electrical Drives. (pp. 453-489Springer. 2000.
  40. Al-Wesabi I, Shafik MB, Ding M, Sarhan MA, Fang Z, Alareqi AG, et al. PV maximum power-point tracking using modified particle swarm optimization under partial shading conditionsChinese Journal of Electrical Engineering2020;6(4):106121. Available from: https://dx.doi.org/10.23919/cjee.2020.000035
  41. Sidrach-de-Cardona M, López LM. Performance analysis of a grid-connected photovoltaic systemEnergy1999;24(2):93102. Available from: https://dx.doi.org/10.1016/s0360-5442(98)00084-x
  42. Esram T, Chapman PL. Comparison of Photovoltaic Array Maximum Power Point Tracking TechniquesIEEE Transactions on Energy Conversion2007;22(2):439449. Available from: https://dx.doi.org/10.1109/tec.2006.874230
  43. Cheikh MA, Larbes C, Kebir GT, Zerguerras A. Maximum power point tracking using a fuzzy logic control schemeRevue des energies Renouvelables2007;10(3):387395. Available from: https://www.cder.dz/download/Art10-3_8
  44. Pathak PK, Yadav AK, Alvi PA. Advanced Solar MPPT Techniques Under Uniform and Non-Uniform Irradiance: A Comprehensive ReviewJournal of Solar Energy Engineering2020;142(4). Available from: https://dx.doi.org/10.1115/1.4046090
  45. Enslin JHR, Wolf MS, Snyman DB, Swiegers W. Integrated photovoltaic maximum power point tracking converterIEEE Transactions on Industrial Electronics1997;44(6):769773. Available from: https://dx.doi.org/10.1109/41.649937
  46. Huynh DC, Dunnigan MW. Development and Comparison of an Improved Incremental Conductance Algorithm for Tracking the MPP of a Solar PV PanelIEEE Transactions on Sustainable Energy2016;7(4):14211429. Available from: https://dx.doi.org/10.1109/tste.2016.2556678
  47. Kamran M, Mudassar M, Fazal MR, Asghar MU, Bilal M, Asghar R. Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic systemJournal of King Saud University-Engineering Sciences2018. Available from: 10.1016/j.jksues.2018.04.006
  48. Rajabioun R. Cuckoo Optimization AlgorithmApplied Soft Computing2011;11(8):55085518. Available from: https://dx.doi.org/10.1016/j.asoc.2011.05.008
  49. Soneji H, Sanghvi RC. Towards the improvement of cuckoo search algorithm2012 World Congress on Information and Communication Technologies2012;p. 878883. Available from: 10.1109/WICT.2012.6409199
  50. Yang XS, Deb S. Cuckoo search via Lévy flights2009 World congress on nature & biologically inspired computing (NaBIC)2009;p. 210214.

Copyright

© 2021 Ibrahim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.