• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 44, Pages: 3270-3279

Review Article

Comprehensive Review of Optimal Utilization of Clock and Power Resources in Multi Bit Flip Flop Techniques

Received Date:02 November 2021, Accepted Date:29 November 2021, Published Date:24 December 2021

Abstract

Objective: To analyze High-speed digital Integrated Circuit (IC) designing techniques and to identify the power dissipation rate in a different configuration of network switches. Methods: the complexity of a large-scale switching network is reduced using 2-bit Multi Bits Flip Flops (MBFF). The throughput and reliability are increased using a multibit flip-flop and have to be operated in parallel. The clock cycle required for 64-bit logical operation is analyzed using Xilinx software. The resources utilized during the execution process in various methods have been identified and analyzed Findings: Based on the survey, the proposed system will be built to identify characteristics of multi-bit flip flop based on switching speed (ps) concerning temperature (c), load capacity (fF), supply voltage (v), power consumption (mW) with respect to operating voltage (v) and many gates with respect to nanometer (nm) Novelty: Chip size and total power consumption rate by optimal chip reconfigurable network has been reduced to micrometer (mm) to nanometer (nm) and 0.3mW to 0.04mW respectively. Performance of parallel different applications operations in effective utilization of MBFF has been increased to 64 bits/s to 128 bits/s. The switching speed is increased with respect to clock frequency without any hazards and jitters using reconfigurable MBFF methods

Keywords: System on Chip; Multibit flipflop; multibit register; breadthfirst search; Register transfer level; Verylargescale integration

References

  1. Nair N, Kaur S. Design of all-optical shift registers using D flip flop based. 2021;247. Available from: https://doi.org/10.1016/j.ijleo.2021.168003
  2. Mallikarjunaswamy S, Sharmila N. A Novel Architecture for Cluster Based False Data Injection Attack Detection and Location Identification in Smart Grid. Advances in Thermofluids and Renewable Energy. 2022;p. 599–611. Available from: https://doi.org/10.1007/978-981-16-3497-0_4
  3. Shivaji R, Nataraj KR, Mallikarjunaswamy S, Rekha KR. Implementation of an Effective Hybrid Partial Transmit Sequence Model for Peak to Average Power Ratio in MIMO OFDM System. In: Lecture Notes in Electrical Engineering. (Vol. 2020, pp. 1343-1353) Springer Singapore. 2022.
  4. Damodaran S, T. S, Anbazhagan R. All optical clocked D flip flop for 1.72 Tb/s optical computing. Microelectronics Journal. 2020;103:104865. Available from: https://dx.doi.org/10.1016/j.mejo.2020.104865
  5. Manjunath TN, Mallikarjunaswamy S, Komala M, Sharmila N, Manu KS. An efficient hybrid reconfigurable wind gas turbine power management system using MPPT algorithm. International Journal of Power Electronics and Drive Systems (IJPEDS). 2021;12(4):2501. Available from: https://dx.doi.org/10.11591/ijpeds.v12.i4.pp2501-2510
  6. Shyu YT, Lin JM, Huang CP, Lin CW, Lin YZ, Chang SJ. Effective and Efficient Approach for Power Reduction by Using Multi-Bit Flip-Flops. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2013;21(4):624–635. Available from: https://dx.doi.org/10.1109/tvlsi.2012.2190535
  7. Umashankar ML, Mallikarjunaswamy S, Ramakrishna MV. Design of High Speed Reconfigurable Distributed Life Time Efficient Routing Algorithm in Wireless Sensor Network. Journal of Computational and Theoretical Nanoscience. 2020;17(9):3860–3866. Available from: https://dx.doi.org/10.1166/jctn.2020.8975
  8. Umashankar ML, Ramakrishna MV, Mallikarjunaswamy S. Design of High Speed Reconfigurable Deployment Intelligent Genetic Algorithm in Maximum Coverage Wireless Sensor Network. Journal of Computational and Theoretical Nanoscience. 2019;17(9):3860–3866. Available from: https://dx.doi.org/10.1166/jctn.2020.8975
  9. Satish P, Srikantaswamy M, Ramaswamy N. A Comprehensive Review of Blind Deconvolution Techniques for Image Deblurring. Traitement du Signal. 2020;37(3):527–539. Available from: https://dx.doi.org/10.18280/ts.370321
  10. Shebin S, Mallikarjunaswamy S. A software tool that provides relevant information for diabetic patients to help prevent diabetic foot. IOSR Journal of Computer Engineering. 2014;16(2):69–73. Available from: https://dx.doi.org/10.9790/0661-16296973
  11. Nair DR, Chopade SS. Comparative analysis of power in Adder using single bit and multi-bit fip-flops, controlled by dynamic hardware control circuit. 2015 International Conference on Computer, Communication and Control (IC4). 2015;p. 1–5. Available from: https://dx.doi.org/10.1109/IC4.2015.7375555
  12. Mallikarjunaswamy S, Nataraj KR, Balachandra P, Sharmila N. Design of High Speed Reconfigurable Coprocessor for Interleaver and De-Interleaver Operations. Journal Impact Factor. 2015;6(1):30–38.
  13. Shebin S, Mallikarjunaswamy S. A Review on Clinical Decision Support System and Its Scope in Medical Field. International Journal of Engineering Research & Technology. 2018;(2) 417–420. Available from: https://www.ijert.org/a-review-on-clinical-decision-support-system-and-its-scope-in-medical-field
  14. Gajare Y, Khaparde A. Power optimisation of single phase clocked feedback D flip-flop for CDMA. International Journal of Electronics Letters. 2021;2021:1–13. Available from: https://dx.doi.org/10.1080/21681724.2021.1966653
  15. Manu KS, Rekha KR, Nataraj KR. FPGA Implementation of Image Block Generation and Color Space Conversion for the Gaussian Mixture Model. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). 2017;p. 24–28. Available from: https://dx.doi.org/10.1109/ICRAECT.2017.14.
  16. Lin MPH, Hsu CC, Chang YT. Recent research in clock power saving with multi-bit flip-flops. 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS). 2011;p. 1–4. Available from: https://dx.doi.org/10.1109/ICRAECT.2017.14.
  17. Cherif L, Chentouf M, Benallal J, Darmi M, Elgouri R, Hmina N. Usage and impact of multi-bit flip-flops low power methodology on physical implementation. 2018 4th International Conference on Optimization and Applications (ICOA). 2018;p. 1–5. Available from: https://dx.doi.org/10.1109/ICOA.2018.8370498
  18. Gautam S. Analysis of multi-bit flip flop low power methodology to reduce area and power in physical synthesis and clock tree synthesis in 90nm CMOS technology. 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2014;p. 570–574. Available from: https://dx.doi.org/10.1109/ICACCI.2014.6968550
  19. Sharmila N, Nataraj KR, Rekha KR. An efficient dynamic power management model for a stand-alone DC Microgrid using CPIHC technique. International Journal of Power Electronics and Drive Systems (IJPEDS). 2021;12(3):1439. Available from: https://dx.doi.org/10.11591/ijpeds.v12.i3.pp1439-1449
  20. Teh EK, Zawawi MAM, Mohamed MFP, Isa NAM. Practical Full Chip Clock Distribution Design With a Flexible Topology and Hybrid Metaheuristic Technique. IEEE Access. 2021;9(9):14816–14835. Available from: https://dx.doi.org/10.1109/access.2021.3053052
  21. Touil L, Hamdi A, Gassoumi I, Mtibaa A. Design of Low-Power Structural FIR Filter Using Data-Driven Clock Gating and Multibit Flip-Flops. Journal of Electrical and Computer Engineering. 2020;2020:1–9. Available from: https://dx.doi.org/10.1155/2020/8108591
  22. Chentouf M, Alaoui Ismaili ZEA. A Novel Net Weighting Algorithm for Power and Timing-Driven Placement. Hindawi Limited. 2018. doi: 10.1155/2018/3905967 Available from: https://dx.doi.org/10.1155/2018/3905967
  23. Wu H, Chen C, Weng K. An Energy-Efficient Strategy for Microcontrollers. Applied Sciences. 2021;11(6):2581. Available from: https://dx.doi.org/10.3390/app11062581
  24. Chundi PK, Wang D, Kim SJ, Yang M, Cerqueira JP, Kang J, et al. Always-On Sub-Microwatt Spiking Neural Network Based on Spike-Driven Clock- and Power-Gating for an Ultra-Low-Power Intelligent Device. Frontiers in Neuroscience. 2021;15. Available from: https://dx.doi.org/10.3389/fnins.2021.684113
  25. Liu D, Yu H, Chai Y. Low‐Power Computing with Neuromorphic Engineering. Advanced Intelligent Systems. 2021;3(2):2000150. Available from: https://dx.doi.org/10.1002/aisy.202000150
  26. Liu D, Svensson C. Power consumption estimation in CMOS VLSI chips. IEEE Journal of Solid-State Circuits. 1994;29(6):663–670. Available from: https://dx.doi.org/10.1109/4.293111
  27. Mallikarjunaswamy S, Nataraj KR, Rekha KR. Design of High-Speed Reconfigurable Coprocessor for Next-Generation Communication Platform. In: Lecture Notes in Electrical Engineering. (pp. 57-67) Springer India. 2014.
  28. Jiang IH, Chang C, Yang Y, . INTEGRA: Fast Multibit Flip-Flop Clustering for Clock Power Saving. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2012;31:192–204. Available from: https://dx.doi.org/10.1109/TCAD.2011.2177459
  29. Mahendra HN, Mallikarjunaswamy S, Rekha V, Puspalatha V, Sharmila N. Performance Analysis of Different Classifier for Remote Sensing Application. International Journal of Engineering and Advanced Technology. 2019;9(1):7153–7158. Available from: http://dx.doi.org/10.35940/ijeat.A1879.109119
  30. Thazeen S, Mallikarjunaswamy S, Siddesh GK, Sharmila N. Conventional and Subspace Algorithms for Mobile Source Detection and Radiation Formation. Traitement du Signal. 2021;38(1):135–145. Available from: https://dx.doi.org/10.18280/ts.380114
  31. Chaitra S. A comprehensive review of parallel concatenation of LDPC code techniques. Indian Journal of Science and Technology. 2021;14(5):432–444. Available from: https://doi.org/10.17485/IJST/v13i20.459
  32. Edmondson JH, Rubinfeld P, Preston R, Rajagopalan V. Superscalar instruction execution in the 21164 Alpha microprocessor. IEEE Micro. 1995;15(2):33–43. Available from: https://dx.doi.org/10.1109/40.372349
  33. Macsorley O. High-Speed Arithmetic in Binary Computers. Proceedings of the IRE. 1961;49(1):67–91. Available from: https://dx.doi.org/10.1109/jrproc.1961.287779
  34. Raj KS, Siddesh GK. Interference resilient stochastic prediction based dynamic resource allocation model for cognitive MANETs”. Indian Journal of Science and Technology. 2020;2020(41):4332–4350. Available from: https://doi.org/ 10.17485/IJST/v13i41.687

Copyright

© 2021 Rekha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee) 

DON'T MISS OUT!

Subscribe now for latest articles and news.