• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 29, Pages: 2427-2438

Original Article

Computational Studies on Airfoil for Micro-Capacity Horizontal Axis Wind Turbine

Received Date:12 May 2021, Accepted Date:02 August 2021, Published Date:07 September 2021

Abstract

Objectives: To design a blade profile suitable for a micro-capacity wind turbines. To analyze the performance of a new blade profile in terms of lift to drag ratio using simulation software such as QBlade and ANSYS Fluent CFD. Methods: A new airfoil for a micro capacity horizontal axis wind turbine is designed using QBlade software. A 3D model of the airfoil is prepared using CATIA. 2D and 3D CFD simulations of this airfoil are carried out using ANSYS Fluent and the simulation results are compared with those obtained from QBlade. Findings: It is found that QBlade results for the lift to drag ratio fairly match with the experimental results at all values of angles of attack (0◦ to 20◦). 3D CFD results also fairly match with experimental results at lower values of angles of attack (0◦ to 3◦). The optimum value of lift to drag ratio is obtained for the angle of attack of 3◦-4◦. 3D CFD simulation under predicts lift to drag ratio at higher angles of attack as compared to the experimental values. Novelty: The study reports simulation results for an airfoil blade profile of a micro-capacity wind turbine using both QBlade and ANSYS Fluent CFD (both 2D and 3D). The simulation results fairly match with the available experimental results.

Keywords: airfoil; microcapacity; wind turbine; lift to drag ratio; angle of attack; CFD

References

  1. Keith DW, Decarolis JF, Denkenberger DC, Lenschow DH, Malyshev SL, Pacala S, et al. The influence of large-scale wind power on global climate. Proceedings of the National Academy of Sciences. 2004;101(46):16115–16135. Available from: https://doi.org/10.1073/pnas.0406930101
  2. Fiedler BH, Bukovsky MS. The effect of a giant wind farm on precipitation in a regional climate model. Environmental Research Letters. 2011;6(4):45101. Available from: https://iopscience.iop.org/article/10.1088/1748-9326/6/4/045101/meta
  3. Tummala A, Velamati RK, Sinha DK, Indraja V, Krishna VH. A review on small scale wind turbines. Renewable and Sustainable Energy Reviews. 20161;56:1351–1371. Available from: https://doi.org/10.1016/j.rser.2015.12.027
  4. Bukala J, Damaziak K, Kroszczynski K, Krzeszowiec M, Malachowski J. Investigation of parameters influencing the efficiency of small wind turbines. Journal of Wind Engineering and Industrial Aerodynamics. 20151;146:29–38. Available from: https://doi.org/10.1016/j.jweia.2015.06.017
  5. Lee MH, Shiah YC, Bai CJ. Experiments and numerical simulations of the rotor-blade performance for a small-scale horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics. 20161;149:17–29. Available from: https://doi.org/10.1016/j.jweia.2015.12.002
  6. Manwell JF, Mcgowan JG, Al R. Wind energy explained: theory, design and application. John Wiley & Sons. 2010.
  7. Rodrigues RM, Piper JD, Bhattacharya SS, Wilson SA, Birzer CH. Development of guidelines for the construction of wind turbines using scrap material. Procedia engineering. 20161;159:292–299. Available from: https://doi.org/10.1016/j.proeng.2016.08.181
  8. Ali A, Chowdhury H, Loganathan B, AF. An aerodynamic study of a domestic scale horizontal axis wind turbine with varied tip configurations. Procedia Engineering. 2015;105(1):757–762. Available from: https://doi.org/10.1016/j.proeng.2015.05.067
  9. Pourrajabian A, Ebrahimi R, Mirzaei M. Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions. Energy Conversion and Management. 20141;87:119–127. Available from: https://doi.org/10.1016/j.enconman.2014.07.003
  10. Ozgener O. A small wind turbine system (SWTS) application and its performance analysis. Energy Conversion and Management. 20061;47(11-12):1326–1337. Available from: https://doi.org/10.1016/j.enconman.2005.08.014
  11. Ameku K, Nagai BM, Roy JN. Design of a 3 kW wind turbine generator with thin airfoil blades. Experimental Thermal and Fluid Science. 20081;32(8):1723–1730. Available from: https://doi.org/10.1016/j.expthermflusci.2008.06.008
  12. Monteiro JP, Silvestre MR, Piggott H, Andre JC. Wind tunnel testing of a horizontal axis wind turbine rotor and comparison with simulations from two Blade Element Momentum codes. Journal of Wind Engineering and İndustrial Aerodynamics. 20131;123:99–106. Available from: https://doi.org/10.1016/j.jweia.2013.09.008
  13. Choubey A, Baredar P, Choubey N. Power Optimization of NACA 0018 Airfoil Blade of Horizontal Axis Wind Turbine by CFD Analysis. International Journal of Energy Optimization and Engineering. 2020;(1) 122–139. doi: 10.4018/IJEOE.2020010104
  14. Ani VA. Optimal energy system for single household in Nigeria. International Journal of Energy Optimization and Engineering. 2013;1(3):16–41. doi: 10.4018/ijeoe.2013070102
  15. Reddy KP, Rao MV. Modelling and simulation of hybrid wind solar energy system using MPPT. Indian journal of Science and Technology. 2015;8(23).
  16. Surve ML. A Comprehensive Review of Developing Horizontal Axis Wind Turbine Rotor Blade for Domestic Applications. International Research Journal of Engineering and Technology. 2017;4(6):984–90. Available from: https://www.irjet.net/archives/V4/i6/IRJET-V4I6183.pdf
  17. Marten D, Wendler J, Pechlivanoglou G, Nayeri CN, Co P. QBLADE: an open source tool for design and simulation of horizontal and vertical axis wind turbines. International Journal of Emerging Technology and Advanced Engineering. 2013;3(3):264–269.
  18. Dhurpate P. Numerical Analysis of Different Airfoils Using QBlade Software. Imperial Journal of Interdisciplinary Research. 2016;2(6). Available from: http://www.onlinejournal.in/IJIRV2I6/264.pdf
  19. Pourrajabian A, Dehghan M, Javed A, Wood D. Choosing an appropriate timber for a small wind turbine blade: A comparative study. Renewable and Sustainable Energy Reviews. 2019;100:1–8. doi: 10.1016/j.rser.2018.10.010
  20. Khalil Y, Tenghiri L, Abdi F, Bentamy A. Efficiency of a small wind turbine using BEM and CFD. InIOP Conference Series: Earth and Environmental Science. 2018;1(161). doi: 10.1088/1755-1315/161/1/012028
  21. Tasneem Z, Noman A, Das A, Saha SK, Islam DK, Ali MR, et al. An analytical review on the evaluation of wind resource and wind turbine for urban application: Prospect and challenges. Developments in the Built Environment. 2020;(100033). Available from: https://doi.org/10.1016/j.dibe.2020.100033
  22. Koç E, Günel O, Yavuz T. Comparison of Qblade and CFD results for small-scaled horizontal axis wind turbine analysis. 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). 2016;p. 204–209. doi: 10.1109/ICRERA.2016.7884538

Copyright

© 2021 Surve et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.