• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 36, Pages: 2929-2937

Original Article

Deep Sentiment Classification using Topic Modeling for Covid-19

Received Date:26 June 2023, Accepted Date:17 August 2023, Published Date:27 September 2023


Objectives: To extract various topics related to Covid-19 from Twitter API using LDA topic modelling technique and to analyse the sentiment of the people about the extracted topics. An interactive Q/A system with both voice and text interface is also proposed to guide COVID-19 related decision-making. And also to summarize the tweets containing a query and to suggest suitable solutions. Method: The proposed extracts Covid-19 related tweets from twitter API and uses Natural Language Process (NLP) method based on topic modeling to uncover various issues related to COVID-19 from public opinions. The training dataset consists of 3,38,666 COVID 19 related comments and the testing dataset consists of 1,12,888 comments. LSTM recurrent neural network is used for sentiment analysis of the extracted tweets and to produce summary for each topic identified through topic modelling. Findings: The accuracy comparison has been done for the existing system against the proposed model with respect various machine learning classifiers. The findings are- LSTM gives an accuracy of 79.5%, the Naïve Bayes classifier gives the accuracy of 74%, the Multinomial Naïve Bayes gives an accuracy of 74.5%, whereas the linear regression classifier achieves an accuracy of 76%, KNN classifier achieves an accuracy of 74.5% and the random forest with an accuracy of 75.5%. Novelty: The proposal of interactive Question Answering system is first of its kind. This work sheds light on the importance of using public opinions and suitable computational techniques to understand issues surrounding Covid 19 and to guide related decision-making.

Keywords: COVID19; LDA Topic Modeling; LSTM; Sentiment Analysis; Q/A System


  1. Jelodar H, Wang Y, Orji R, Huang S. Deep Sentiment Classification and Topic Discovery on Novel Coronavirus or COVID-19 Online Discussions: NLP Using LSTM Recurrent Neural Network Approach. IEEE Journal of Biomedical and Health Informatics. 2020;24(10):2733–2742. Available from: https://doi.org/10.1109/JBHI.2020.3001216
  2. Naseem U, Razzak I, Khushi M, Eklund PW, Kim J. COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis. IEEE Transactions on Computational Social Systems. 2021;8(4):1003–1015. Available from: https://doi.org/10.1109/TCSS.2021.3051189
  3. Ji LI, Xueyan T, Daoli D. Identification of Public Opinionon COVID-19 in Microblogs. In: 2021 16th International Conference on Computer Science & Education (ICCSE). Lancaster, United Kingdom, 17-21 August 2021. IEEE. .
  4. Mudassir MA, Mor Y, Munot R, Shankarmani R. Sentiment Analysis of COVID-19 Vaccine Perception Using NLP. In: 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). Coimbatore, India, 02-04 September 2021. IEEE. p. 516–521.
  5. Gupta P, Kumar S, Suman RR, Kumar V. Sentiment Analysis of Lockdown in India During COVID-19: A Case Study on Twitter. IEEE Transactions on Computational Social Systems. 2021;8(4):992–1002. Available from: https://doi.org/10.1109/TCSS.2020.3042446
  6. D'Andrea E, Ducange P, Marcelloni F. Monitoring negative opinion about vaccines from tweets analysis. In: 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). Kolkata, India, 03-05 November 2017. Kolkata, India. IEEE. p. 186–191.
  7. Chandrasekaran R, Mehta V, Valkunde T, Moustakas E. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. Journal of Medical Internet Research. 2020;22(10):1–12. Available from: https://www.jmir.org/2020/10/e22624/
  8. Mishra RK, Urolagin S, Jothi JAA, Neogi AS, Nawaz N. Deep Learning-based Sentiment Analysis and Topic Modeling on Tourism during Covid-19 Pandemic. Frontiers in Computer Science. 2021;3:1–14. Available from: https://doi.org/10.3389/fcomp.2021.775368
  9. Krajah A, Almadani YF, Saadeh H, Sleit A. Analyzing Covid-19 Data Using Various Algorithms. In: 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). Amman, Jordan, 16-18 November 2021. IEEE. p. 66–71.
  10. Arbane M, Benlamri R, Brik Y, Alahmar AD. Social media-based COVID-19 sentiment classification model using Bi-LSTM. Expert Systems with Applications. 2023;212:1–9. Available from: https://doi.org/10.1016/j.eswa.2022.118710
  11. Mishra RK, Urolagin S, Jothi JAA, Neogi AS, Nawaz N. Deep Learning-based Sentiment Analysis and Topic Modeling on Tourism during Covid-19 Pandemic. Frontiers in Computer Science. 2021;3:1–14. Available from: https://doi.org/10.3389/fcomp.2021.775368
  12. Farouk M. Measuring Sentences Similarity: A Survey. Indian Journal of Science and Technology. 2019;12(25):1–11. Available from: https://doi.org/10.17485/ijst/2019/v12i25/143977
  13. Jang H, Rempel EC, Carenini G, Janjua N. Exploratory Analysis of COVID-19 Related Tweets in North America to Inform Public Health Institutes. In: Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020. (pp. 1-6) Association for Computational Linguistics. 2020.
  14. Velvizhy P, Pravi A, Selvi M, Ganapathy S, Kannan A. Fuzzy-based review rating prediction in e-commerce. International Journal of Business Intelligence and Data Mining. 2020;17(1):101–116. Available from: https://doi.org/10.1504/IJBIDM.2020.108034
  15. Kaila P, Dr, Rajesh, Prasad DAV, Krishna. Informational Flow on Twitter - Corona Virus Outbreak - Topic Modelling Approach. International Journal of Advanced Research in Engineering and Technology (IJARET). 2020;11(3):128–134. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3565169
  16. Baldha T, Mungalpara M, Goradia P, Bharti S. Covid-19 Vaccine Tweets Sentiment Analysis and Topic Modelling for Public Opinion Mining. In: 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV). Gandhinagar, India, 24-26 September 2021. IEEE. p. 1–6.


© 2023 Velvizhy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.