• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 20, Pages: 965-975

Original Article

Delay Aware and Performance Efficient Workflow Scheduling of Web Servers in Hybrid Cloud Computing Environment

Received Date:27 September 2021, Accepted Date:24 March 2022, Published Date:28 May 2022


Background : To design an effective workflow scheduling optimization of web servers that will bring good trade-offs to meet the workflow task delay prerequisite and performance requirement. Methods: This study presents a delayaware and performance-efficient energy optimization (DAPEEO) technique for workflow execution in a heterogeneous environment (i.e., edge-cloud environment). This technique provides a workflow execution model which meets the application delay prerequisite and performance requirement. Findings: Our model has been designed to reduce the energy consumption, increase throughput, reduce computational cost and computational time to provide a delay-aware and performance-efficient workflow model for the web servers in hybrid cloud computing. Our model Delay Aware and Performance Efficient Workflow Scheduling of Web Servers in Hybrid Cloud Computing Environment (DAPEEO) has reduced the energy consumption by 4.217%, increased the throughput by 19.51%, and reduce the computational cost by 62.38% when compared with the existing Deadline-Constrained Cost Optimization for Hybrid Clouds (DCOH) models. Furthermore, the average energy consumption showed a reduction of 40.993% and 90.384% when compared with the DCOH and Self-Configuring and Self-Healing of Cloud-based Resources (RADAR) workload model respectively. Experiment outcome shows the DAPEEO technique achieves much superior energy efficiency, throughput and computation cost reduction when compared with the existing workflow execution model. Novelty: Existing model failed to balance reducing cost, and meeting workflow execution deadlines under a heterogeneous environment. On the other side, the DAPEEO is efficient in bringing trade-offs in reducing energy dissipation and meeting task deadlines with reduced cost under the edge-cloud computing model.

Keywords: Cloud Computing; EdgeCloud; DAPEEO; Energy Efficiency; Throughput; Cost


  1. Jambigi MV. Energy Aware Resource Utilization Technique for Workflow Scheduling in Cloud Computing Environment. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2021;12(10):7461–72. Available from: https://doi.org/10.17762/turcomat.v12i10.5652
  2. Ijaz S, Munir EU, Ahmad SG, Rafique MM, Rana OF. Energy-makespan optimization of workflow scheduling in fog–cloud computing. Computing. 2021;103(9):2033–2059. Available from: https://dx.doi.org/10.1007/s00607-021-00930-0
  3. Ramathilagam A, Vijayalakshmi K. Workflow scheduling in cloud environment using a novel metaheuristic optimization algorithm. International Journal of Communication Systems. 2021;34(5):4746. Available from: https://dx.doi.org/10.1002/dac.4746
  4. Konjaang JK, Xu L. Multi-objective workflow optimization strategy (MOWOS) for cloud computing. Journal of Cloud Computing. 2021;10(1):1–19. Available from: https://dx.doi.org/10.1186/s13677-020-00219-1
  5. Mubeen A, Ibrahim M, Bibi N, Baz M, Hamam H, Cheikhrouhou O. Alts: An Adaptive Load Balanced Task Scheduling Approach for Cloud Computing. Processes. 2021;9(9):1514. Available from: https://dx.doi.org/10.3390/pr9091514
  6. Zhou X, Zhang G, Sun J, Zhou J, Wei T, Hu S. Minimizing cost and makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT. Future Generation Computer Systems. 2019;93:278–289. Available from: https://dx.doi.org/10.1016/j.future.2018.10.046
  7. Zhou J, Wang T, Cong P, Lu P, Wei T, Chen M. Cost and makespan-aware workflow scheduling in hybrid clouds. Journal of Systems Architecture. 2019;100:101631. Available from: https://dx.doi.org/10.1016/j.sysarc.2019.08.004
  8. Xie G, Zeng G, Li R, Li K. Energy-Aware Processor Merging Algorithms for Deadline Constrained Parallel Applications in Heterogeneous Cloud Computing. IEEE Transactions on Sustainable Computing. 2017;2(2):62–75. Available from: https://dx.doi.org/10.1109/tsusc.2017.2705183
  9. Li Z, Ge J, Hu H, Song W, Hu H, Luo B. Cost and Energy Aware Scheduling Algorithm for Scientific Workflows with Deadline Constraint in Clouds. IEEE Transactions on Services Computing. 2018;11(4):713–726. Available from: https://dx.doi.org/10.1109/tsc.2015.2466545
  10. Wen Y, Wang Z, Zhang Y, Liu J, Cao B, Chen J. Energy and cost aware scheduling with batch processing for instance-intensive IoT workflows in clouds. Future Generation Computer Systems. 2019;101:39–50. Available from: https://dx.doi.org/10.1016/j.future.2019.05.046
  11. Garg R, Mittal M, Son LH. Reliability and energy efficient workflow scheduling in cloud environment. Cluster Computing. 2019;22(4):1283–1297. Available from: https://dx.doi.org/10.1007/s10586-019-02911-7
  12. Chunlin L, Jianhang T, Youlong L. Hybrid Cloud Adaptive Scheduling Strategy for Heterogeneous Workloads. Journal of Grid Computing. 2019;17(3):419–446. Available from: https://dx.doi.org/10.1007/s10723-019-09481-3
  13. Zhu Z, Zhang G, Li M, Liu X. Evolutionary Multi-Objective Workflow Scheduling in Cloud. IEEE Transactions on Parallel and Distributed Systems. 2016;27(5):1344–1357. Available from: https://dx.doi.org/10.1109/tpds.2015.2446459
  14. Rehman A, Hussain SS, Rehman Z, Zia S, Shamshirband S. Multi‐objective approach of energy efficient workflow scheduling in cloud environments. Concurrency and Computation: Practice and Experience. 2019;31(8):e4949. Available from: https://dx.doi.org/10.1002/cpe.4949
  15. Sardaraz M, Tahir M. A parallel multi-objective genetic algorithm for scheduling scientific workflows in cloud computing. International Journal of Distributed Sensor Networks. 2020;16(8):155014772094914. Available from: https://dx.doi.org/10.1177/1550147720949142
  16. Bertsekas DP. Feature-based aggregation and deep reinforcement learning: a survey and some new implementations. IEEE/CAA Journal of Automatica Sinica. 2019;6(1):1–31. Available from: https://dx.doi.org/10.1109/jas.2018.7511249
  17. Xue L, Sun C, Wunsch D, Zhou Y, Yu F. An adaptive strategy via reinforcement learning for the prisoner dilemma game. IEEE/CAA Journal of Automatica Sinica. 2018;5(1):301–310. Available from: https://dx.doi.org/10.1109/jas.2017.7510466
  18. Wang H, Huang T, Liao X, Abu-Rub H, Chen G. Reinforcement Learning for Constrained Energy Trading Games With Incomplete Information. IEEE Transactions on Cybernetics. 2017;47(10):3404–3416. Available from: https://dx.doi.org/10.1109/tcyb.2016.2539300
  19. Duan R, Prodan R, Li X. Multi-Objective Game Theoretic Schedulingof Bag-of-Tasks Workflows on Hybrid Clouds. IEEE Transactions on Cloud Computing. 2014;2(1):29–42. Available from: https://dx.doi.org/10.1109/tcc.2014.2303077
  20. Jiahao W, Zhiping P, Delong C, Qirui L, Jieguang H. A multiobject optimization cloud workflow scheduling algorithm based on reinforcement learning. In: Intelligent Computing Theories and Application. (Vol. 15, pp. 550-559) Cham, Switzerland. Springer. 2018. 10.1007/978-3-319-95933-7_64
  21. Gill SS, Chana I, Singh M, Buyya R. RADAR: Self-configuring and self-healing in resource management for enhancing quality of cloud services. Concurrency and Computation: Practice and Experience. 2019;31(1):e4834. Available from: https://dx.doi.org/10.1002/cpe.4834
  22. Singh H, Bhasin A, Kaveri PR. QRAS: efficient resource allocation for task scheduling in cloud computing. SN Applied Sciences. 2021;3(4). Available from: https://dx.doi.org/10.1007/s42452-021-04489-5
  23. Lis A, Sudolska A, Pietryka I, Kozakiewicz A. Cloud Computing and Energy Efficiency: Mapping the Thematic Structure of Research. Energies. 2020;13(16):4117. Available from: https://dx.doi.org/10.3390/en13164117


© 2022 Sangani & Rodd. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.