• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 40, Pages: 4275-4286

Original Article

Denoising wrist pulse signals using variance thresholding technique

Received Date:11 September 2020, Accepted Date:11 November 2020, Published Date:23 November 2020


Background/Objectives: Denoising of the wrist pulse is a significant preprocessing stage for accurate investigation of the disease. The objective is to improve and analyze performance metrics of denoising techniques. Methods/Statistical analysis: Denoising of wrist pulse with the evaluation parameters such as PSNR, SNR, AE and RMSE has been implemented using wavelets such as Daubechies, Symlet and Biorthogonal. The performance of wavelets depends on the choice of decomposition level N and thresholding techniques. Findings: Variance thresholding technique showed significant improvement in Peak Signal to Noise Ratio (PSNR), Signal to Noise Ratio (SNR) and reduction in Absolute Error (AE) and Root Mean Square Error (RMSE) compared to other thresholding methods. Novelty/Applications: Experimental results showed drastic improvement in PSNR and SNR retaining the pathophysiological information of the wrist pulse signal for future analysis. 
Keywords: Wrist pulse; SNR; PSNR; AE; RMSE; wavelets


  1. Saxena S, Jais R, Hota MK. Removal of powerline interference from ECG signal using FIR, IIR, DWT and NLMS adaptive filter. 2019 International Conference on Communication and Signal Processing (ICCSP). 2019;p. 0012–0016. Available from: https://doi.org/10.1109/ICCSP.2019.8698112
  2. Rakshit M, Das S. An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter. Biomedical Signal Processing and Control. 2018;40:140–148. Available from: https://dx.doi.org/10.1016/j.bspc.2017.09.020
  3. Torres-Soto J, Ashley EA. Multi-task deep learning for cardiac rhythm detection in wearable devices. NPJ Digital Medicine. 2009;3(1):1–8. Available from: https://doi.org/10.1038/s41746-020-00320-4
  4. Zhang D, Wang S, Li F, Wang J, Sangaiah AK, Sheng VS, et al. An ECG Signal De-Noising Approach Based on Wavelet Energy and Sub-Band Smoothing Filter. Applied Sciences. 2019;9(22). Available from: https://dx.doi.org/10.3390/app9224968
  5. Hazarika J, Kant P, Dasgupta R, Laskar SH. EEG Wavelet Coherence Based Analysis of Neural Connectivity in Action Video Game Players in Attention Inhibition and Short-term Memoryretention Task. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering). 2019;12(4):324–338. Available from: https://dx.doi.org/10.2174/2352096511666180821111536
  6. Chan HL, Tsai YT, Meng LF, Wu T. The removal of ocular artifacts from EEG signals using adaptive filters based on ocular source components. Annals of biomedical engineering. 2010;38(11):3489–99. Available from: https://doi.org/10.1007/s10439-010-0087-2
  7. Thakker B, Vyas AL, Farooq O, Mulvaney D, Datta S. Wrist pulse signal classification for health diagnosis. In: 4th International Conference on Biomedical Engineering and Informatics (BMEI). Shanghai. p. 1799–1805.
  8. B’charri OE, Latif R, Elmansouri K, Abenaou A, Jenkal W. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform. BioMedical Engineering OnLine. 2017;16. Available from: https://dx.doi.org/10.1186/s12938-017-0315-1
  9. Bui TD, Chen G. Translation-invariant denoising using multiwavelets. IEEE Transactions on Signal Processing. 1998;46(12):3414–3420. Available from: https://dx.doi.org/10.1109/78.735315
  10. Sun Z, Xi X, Yuan C, Yang Y, Hua X. Surface electromyography signal denoising via EEMD and improved wavelet thresholds. Mathematical Biosciences and Engineering. 2020;17(6).


© 2020 Suguna & Veerabhadrappa. This is an open-access article distributed under the terms of the  Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.