• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 40, Pages: 4262-4274

Original Article

Design and simulation of strip loaded and rib waveguide with integration of 2D material

Received Date:11 August 2020, Accepted Date:28 October 2020, Published Date:20 November 2020


Objective- To design Graphene-Silicon based rib waveguide and reduce the losses in the strip in order to meet the requirement for ultra-fast & ultrahigh optical bandwidth communication and computing in integrated optical devices. Method –Propagation losses and effective refractive index are the two key parameters. In order to meet the objective, the effects of Graphene for manufacturing passive devices/components in the field of Integrated Photonic like integrated optical waveguide have been analysed by measuring the changes in propagation losses and effective refractive index of the silicon photonics devices for operating at different wavelengths. Findings- We have presented the design and simulation of SOI (Silicon-on-Insulator) platforms with 2D layer materials (graphene) which has been used along with their mode of propagation, effective refractive index (ne f f ), propagation losses (dB/cm) and varying wavelength range for optimum performance. In addition to this, we have also calculated the boundary limit for both the speed and bandwidth. We also reported the development of Silicon rib waveguide, Graphene-Silicon based rib waveguide and Ge on SOI with graphene later at the top of strip waveguide.Minimum loss of strip waveguide is 2.9 dB/cm which has been obtained for Mid-IR wavelength generally used for high power mid- IR sensing.
Keywords: Silicon-on-Insulator; propagation loss; Effective Refractive Index (ERI); 2 D- material


  1. Stievater TH, Pruessner MW. Suspended Photonic Waveguide Devices. OSA-Applied Optics. 2015.
  2. Kum H, Lee D, Kong W, Kim H, Park Y, Kim Y, et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nature Electronics. 2019;2(10):439–450. Available from: https://dx.doi.org/10.1038/s41928-019-0314-2
  3. Rumley S, MB. Optical Interconnects for extreme scale computing systems. Elsevier-Parallel Computing. 2017. Available from: http://dx.doi.org/10.1016/j.parco.2017.2.001
  4. Komljenovic T, Huang D, Pintus P, Tran MA, Davenport ML, Bowers JE. Photonic Integrated Circuits Using Heterogeneous Integration on Silicon. Proceedings of the IEEE. 2018;106(12):2246–2257. Available from: https://dx.doi.org/10.1109/jproc.2018.2864668
  5. Hongtaolin Z. Mid-infrared integrated photonics on silicon: A perspective. Nanophotonics. 2018;7(2):393–420. Available from: http://doi.org/10.1515/nanoph-2017-0085
  6. Dong B, Guo X, Ho CP, Li B, Wang H, Lee C, et al. Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics. IEEE Photonics Journal. 2017;9(3):1–10. Available from: https://dx.doi.org/10.1109/jphot.2017.2692039
  7. Alagrappan G, ChingEngPng. Universal deep learning representation of effective refractive index for photonics channel waveguides. Journal of Optical Society of America. 2019. Available from: http://doi.org/10.1364/JOSAB.36.002636
  8. Yusof R, Ali N, Kolenderski P, Slowik K, Hambali NAMA. Comparative Studies of Rib Waveguide Material for Quantum Communication Application. IOP Conference Series: Materials Science and Engineering. 2019;551. Available from: https://dx.doi.org/10.1088/1757-899x/551/1/012018
  9. Awal MA, Ahmed Z, Talukder MA. An efficient plasmonic photovoltaic structure using silicon strip-loaded geometry. Journal of Applied Physics. 2015;117(6). Available from: https://dx.doi.org/10.1063/1.4907873
  10. Hao R, Ye Z, Gu Y, Peng X, Chen H, Li E. Large modulation capacity in graphene-based slot modulators by enhanced hybrid plasmonic effects. Scientific Reports. 2018;8(1). Available from: https://dx.doi.org/10.1038/s41598-018-34914-6
  11. Malik A, Muneeb M. Germanium - on - Silicon Mid-Infrared Arrayed Waveguide Grating Multiplexer. IEEE- Photonics Technology Letters. 2013. Available from: https://doi.org/10.1109/LPT.2013.2276479
  12. Kim R, Chung K, Kim JY, Nam Y, Park SHK, Shin J. Metal nanoparticle array as a tunable refractive index material over broad visible and infrared wavelengths. ACS Photonics. 2018;5(4):1188–1195. Available from: https://dx.doi.org/10.1021/acsphotonics.7b01497


© 2020 Jainth et al. This is an open access article distributed under the terms of the  Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.