• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 24, Pages: 1213-1223

Original Article

Detailed Chemical Analysis of Unusually Weathered Rocks

Received Date:14 February 2022, Accepted Date:20 May 2022, Published Date:01 July 2022


Objectives: This study aimed to conduct a detailed chemical analysis of the Samanalawewa dam to provide information on its weathering conditions. Method: The mineralogical composition of the dam was analyzed by powder Xray diffraction (PXRD), atomic absorption spectroscopy (AAS), gravimetric, and X-ray fluorescence (XRF) analysis in order to identify chemical changes that have taken place. Findings: Widespread discoloured (brick red) and crushable areas in the dam and the quarry site indicate weathering of the compositional rocks. Each weathered rock sample showed a similar compositional pattern to each other as well as charnockite (CHA) rather than the other structural rocks of the dam; biotite gneiss (BIO), garnet biotite sillimanite gneiss (GAR), and limestone (LIM) indicating that only CHA has been weathered rapidly. Since LIM is not affected and the contact water (pH; reservoir 6.79 - 7.12 and holes in the quarry site 6.43-6.78) is almost neutral, this rapid weathering has not been governed by general chemical weathering processes like acid rains or stormwater. The relative contents of aluminium and magnesium have decreased during the weathering process while increasing the relative content of iron as well as sodium, which is a mobile element. The potassium content also has not decreased significantly. Moreover, chemical weathering indices like chemical index of alteration (CIA) and chemical index of weathering (CIW) values for completely weathered rocks were less than 50 revealing their unsuitability to assess the degree of weathering of the Samanalawewa dam. Novelty: Charnockite in the Samanalawewa dam has been weathered rapidly and chemical weathering indices; CIA and CIW are not valid to assess its degree of weathering.

Keywords: Metamorphic; Charnockite; Rock weathering; Rock composition; Chemical weathering indices


  1. Cassar J, Standing JR. Geomaterials: aggregates, building stone and earthworks: papers from 50 years of QJEGH. Quarterly Journal of Engineering Geology and Hydrogeology. 2017;50(2):95–105. Available from: http://dx.doi.org/10.1144/qjegh2016-101
  2. Laksiri K, Gunathilake J, Iwao Y. A Case Study of the Samanalawewa Reservoir on the Walawe River in an Area of Karst in Sri Lanka. Sinkholes and the Engineering and Environmental Impacts of Karst. 2005;p. 253–62. Available from: ttps://doi.org/10.1061/40796(177)27
  3. Udagedara DT, Oguchi CT, Gunatilake AAJK. Combination of chemical indices and physical properties in the assessment of weathering grades of sillimanite-garnet gneiss in tropical environment. Bulletin of Engineering Geology and the Environment. 2017;76(1):145–157. Available from: https://doi.org/10.1007/s12303-016-0060-7
  4. Přikryl R. Durability assessment of natural stone. Quarterly Journal of Engineering Geology and Hydrogeology. 2013;46(4):377–390. Available from: https://doi.org/10.1144/qjegh2012-052
  5. Carroll D. Rock weathering. Springer Science & Business Media. Springer US. 1970.
  6. Taylor LL, Leake JR, Quirk J, Hardy K, Banwart SA, Beerling DJ. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology. 2009;7(2):171–191. Available from: https://doi.org/10.1111/j.1472-4669.2009.00194.x
  7. Bufe A, Cook KL, Galy A, Wittmann H, Hovius N. The effect of lithology on the relationship between denudation rate and chemical weathering pathways. 2021;p. 1–27. Available from: https://doi.org/10.5194/esurf-2021-87
  8. Borrelli L, Perri F, Critelli S, Gullà G. Minero-petrographical features of weathering profiles in Calabria, southern Italy. Catena. 2012;92:196–207. Available from: http://dx.doi.org/10.1016/j.catena.2012.01.003
  9. Upendra B, Ciba M, Aiswarya A, Dev VV, Sreenivasulu G, Krishnan KA. Mechanisms controlling the dissolved load, chemical weathering and CO2 consumption rates of Cauvery River, South India: role of secondary soil minerals. Environmental Earth Sciences. 2022;81(3). Available from: https://doi.org/10.1007/s12665-022-10222-1
  10. Zhang S, Bai X, Zhao C, Tan Q, Luo G, Wang J, et al. Global CO2 Consumption by Silicate Rock Chemical Weathering: Its Past and Future. Earth's Future. 2021;9(5):1–20. Available from: https://doi.org/10.1029/2020EF001938
  11. Kumarasiri ADTN, Udayakumara EPN, Jayawardana JMCK. Impacts of soil erosion and forest quality on water quality in Samanalawewa watershed, Sri Lanka. Modeling Earth Systems and Environment. 2022;8(1):529–544. Available from: https://doi.org/10.1007/s40808-021-01082-y
  12. Zhang W, Hu Z. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples. Spectrochimica Acta Part B: Atomic Spectroscopy. 2019;160:105690. Available from: https://doi.org/10.1016/j.sab.2019.105690
  13. Hu Z, Qi L. Sample Digestion Methods. In: Treatise Geochemistry (2nd). (Vol. 15, pp. 87-109) 2013.
  14. Balaram V, Subramanyam KSV. Sample preparation for geochemical analysis: Strategies and significance. Advances in Sample Preparation. 2022;1:100010. Available from: https://doi.org/10.1016/j.sampre.2022.100010
  15. Gharti RB, Hitan DK, Prasad MK, Oli HB. Chemical Analysis of Limestone of Bojhe, Halesi-Tuwachung Municipality, for Industrial Applications. Amrit Research Journal. 2020;1(1):59–64. Available from: https://doi.org/10.3126/arj.v1i1.32455
  16. Boyle JF. Rapid elemental analysis of sediment samples by isotope source XRF. J Paleolimnol. 2000;23(2):213–234. Available from: https://doi.org/10.1023/A:1008053503694
  17. Matilainen R, Tummavuori J. Determination of SiO 2 in lime mud by gravimetry. Fresenius' Journal of Analytical Chemistry. 1999;364(8):700–704. Available from: https://doi.org/10.1007/s002160051417
  18. Weber PA, Hughes JB, Conner LB, Lindsay P, Smart RSC. hort-term acid rock drainage characteristics determined by paste pH and kinetic NAG testing: Cypress prospect, New Zealand. Journal American Society of Mining and Reclamation. 2006;2006(2):2289–2310. Available from: https://doi.org/10.21000/jasmr06022289
  19. Vinnarasi F, Srinivasamoorthy K, Saravanan K, Gopinath S, Prakash R, Ponnumani G, et al. Rare earth elements geochemistry of groundwater from Shanmuganadhi, Tamilnadu, India: Chemical weathering implications using geochemical mass-balance calculations. Geochemistry. 2020;80(4):125668. Available from: https://doi.org/10.1016/j.chemer.2020.125668
  20. Beerling DJ, Kantzas EP, Lomas MR, Wade P, Eufrasio RM, Renforth P, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature. 2020;583(7815):242–248. Available from: https://doi.org/10.1038/s41586-020-2448-9
  21. Ramyapriya R, Elango L. Atmospheric CO2 consumption by rock weathering over a five year period in a large non-perennial tropical river basin of southern India. Environmental Science and Pollution Research. 2021;28(21):26461–26478. Available from: https://doi.org/10.1007/s11356-020-12257-y
  22. Arnaud F, Révillon S, Debret M, Revel M, Chapron E, Jacob J, et al. Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology. Quaternary Science Reviews. 2012;51:81–92. Available from: https://doi.org/10.1016/j.quascirev.2012.07.025


© 2022 Rajapaksha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.