• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 45, Pages: 4233-4243

Original Article

Dynamic Behaviour Modelling of Magneto-Rheological Fluid Damper Using Machine Learning

Received Date:06 July 2023, Accepted Date:31 October 2023, Published Date:06 December 2023

Abstract

Objectives: Despite significant advancements in the field of automotive suspension systems, a notable research gap exists in accurately predicting the intricate nonlinear damping behavior of Magnetorheological Dampers (MRDs), which hinders the comprehensive enhancement of automotive comfort and safety. This study aims to address this gap by developing a novel machine learning-based black box model capable of precisely forecasting the complex damping characteristics exhibited by MRDs, thereby paving the way for substantial improvements in both ride comfort and vehicle safety. Methods: A methodology integrating machine learning and real-time feedback control is employed, utilizing Linear, Nonlinear Autoregressive with Exogenous Variables (ARX), and Hammerstein-Wiener models for input selection and parameter estimation. Experimental data from hydraulic testing is used to develop a nonlinear black box model using a NARX structure. Inputs of MRD force and velocity predict the corresponding damping force, improving stability and generality compared to physical modeling methods. Findings: The successful implementation of the proposed methodology enables the identification of a model that closely matches experimental data obtained from an MR damper. The developed non-linear black box model, combined with constructive parameter estimation models, improves the understanding and control of MR damping behaviour. Novelty: This advancement contributes to the field's progress by offering a novel approach for predicting the damping behaviour of MRDs, facilitating their effective utilization in various applications across the automotive and other industries.

Keywords: Magneto­rheological fluids, Nonlinear dynamics, Feedback control, Machine learning, MR damper, Dynamic modeling

References

  1. Ahamed R, Choi SB, Ferdaus MM. A state of art on magneto-rheological materials and their potential applications. Journal of Intelligent Material Systems and Structures. 2018;29(10):2051–2095. Available from: https://doi.org/10.1177/1045389X18754350
  2. Ma B, Yang F, Gong D, Wei Z. LuGre model for a magneto-rheological (MR) fluid damper. In: 2017 International Conference on Advanced Mechatronic Systems (ICAMechS). Xiamen, China, 06-09 December 2017. IEEE. p. 1–4.
  3. Rahmat MS, Hudha K, Kadir ZA, Amer NH, MLHAR, Abdullah S. Modelling and validation of magneto-rheological fluid damper behaviour under impact loading using interpolated multiple adaptive neuro-fuzzy inference system. Multidiscipline Modeling in Materials and Structures. 2020;16(6):1395–1415. Available from: https://doi.org/10.1108/MMMS-10-2019-0187
  4. Yu J, Dong X, Sun S, Li W. Comparison of dynamic models based on backbone curve for rotary magneto-rheological damper. Proceedings of the Institution of Mechanical Engineers. 2019;234(14):2732–2740. Available from: https://doi.org/10.1177/0954406219856392
  5. Xu F, Dong D, Huang Y, Song S, Yan B. Physical modeling and experimental verification of magneto-rheological damper under medium and high frequency excitation. Proceedings of the Institution of Mechanical Engineers. 2020;235(2):353–365. Available from: https://doi.org/10.1177/1464420720966007
  6. Rossi A, Orsini F, Scorza A, Botta F, Belfiore NP, Sciuto SA. A Review on Parametric Dynamic Models of Magnetorheological Dampers and Their Characterization Methods. Actuators. 2018;7(2):1–21. Available from: https://doi.org/10.3390/act7020016
  7. Ahamed R, Choi SB, Ferdaus MM. A state of art on magneto-rheological materials and their potential applications. Journal of Intelligent Material Systems and Structures. 2018;29(10):2051–2095. Available from: https://doi.org/10.1177/1045389X18754350
  8. Li DD, Keogh DF, Huang K, Chan QN, Yuen ACY, Menictas C, et al. Modeling the Response of Magnetorheological Fluid Dampers under Seismic Conditions. Applied Sciences. 2019;9(19):1–16. Available from: https://doi.org/10.3390/app9194189
  9. Lv H, Zhang S, Sun Q. Magnetorheological damper current estimation based on k-nearest neighbor algorithm. Journal of Intelligent Material Systems and Structures. 2022;34(1):111–120. Available from: https://doi.org/10.1177/1045389X221103489
  10. Jeniš F, Kubík M, Michálek T, Strecker Z, Žáček J, Mazůrek I. Effect of the Magnetorheological Damper Dynamic Behaviour on the Rail Vehicle Comfort: Hardware-in-the-Loop Simulation. Actuators. 2023;12(2):1–13. Available from: https://doi.org/10.3390/act12020047
  11. Huaxia D, Xinyu L. A brief review of variable stiffness and damping magnetorheological fluid dampers. Frontiers in Materials. 2022;9:1–15. Available from: https://doi.org/10.3389/fmats.2022.1019426
  12. Saharuddin KD, Ariff MHM, Mohmad K, Bahiuddin I, Ubaidillah, Mazlan SA, et al. Prediction Model of Magnetorheological (MR) Fluid Damper Hysteresis Loop using Extreme Learning Machine Algorithm. Open Engineering. 2021;11(1):584–591. Available from: https://doi.org/10.1515/eng-2021-0053
  13. Bahiuddin I, Imaduddin F, Mazlan SA, Ariff MHM, Mohmad KB, Ubaidillah, et al. Accurate and fast estimation for field-dependent nonlinear damping force of meandering valve-based magnetorheological damper using extreme learning machine method. Sensors and Actuators A: Physical. 2021;318:112479. Available from: https://doi.org/10.1016/j.sna.2020.112479
  14. Hu G, Wu L, Deng Y, Yu L, Luo B. Damping Performance Analysis of Magnetorheological Damper Based on Multiphysics Coupling. Actuators. 2021;10(8):1–23. Available from: https://doi.org/10.3390/act10080176
  15. Guo S, Yang S, Pan C. Dynamic Modeling of Magnetorheological Damper Behaviors. Journal of Intelligent Material Systems and Structures. 2006;17(1):3–14. Available from: https://doi.org/10.1177/1045389X06055860
  16. Miah MS, Chatzi EN, Dertimanis VK, Weber F. Nonlinear modeling of a rotational MR damper via an enhanced boucwen model. Smart Materials and Structures. 2015;24(10):105020. Available from: https://iopscience.iop.org/article/10.1088/0964-1726/24/10/105020/meta
  17. Wang J, Sano A, Chen T, Huang B. Identification of Hammerstein systems without explicit parameterisation of non-linearity. International Journal of Control. 2009;82(5):937–952. Available from: https://doi.org/10.1080/00207170802382376
  18. Jin G, Sain MK, Spencer BE. Nonlinear blackbox modeling of MR-dampers for civil structural control. IEEE Transactions on Control Systems Technology. 2005;13(3):345–355. Available from: https://ieeexplore.ieee.org/document/1424012
  19. Saharuddin KD, Ariff MHM, Mohmad K, Bahiuddin I, Ubaidillah, Mazlan SA, et al. Prediction Model of Magnetorheological (MR) Fluid Damper Hysteresis Loop using Extreme Learning Machine Algorithm. Open Engineering. 2021;11(1):584–591. Available from: https://doi.org/10.1515/eng-2021-0053
  20. Wills A, Schön TB, Ljung L, Ninness B. Identification of Hammerstein–Wiener models. Automatica. 2013;49(1):70–81. Available from: https://doi.org/10.1016/j.automatica.2012.09.018
  21. Zambare H, Khoje A, Patil S, Razban A. MR Damper Modeling Performance Comparison Including Hysteresis and Damper Optimization. IEEE Access. 2021;9:24560–24569. Available from: https://ieeexplore.ieee.org/document/9347443

Copyright

© 2023 Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.