• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 45, Pages: 4280-4290

Original Article

Dynamic Mechanism-Based Portable Anti-Microbial Green Decontamination Station

Received Date:07 February 2023, Accepted Date:25 August 2023, Published Date:11 December 2023


Objectives: The current research is focused on development and evaluation of antimicrobial efficacy of a portable green conveyor machine. Methods: The conveyor belt station was fabricated and incorporated with UV-C (265nm) lamps and air plasma cluster ion generator. Antimicrobial efficacy was evaluated against bacteria (Escherichia coli and Staphylococcus aureus), fungi (Aspergillus brasiliensis) and bacteriophage (MS2) according to the ISO Standard No. 18593:2018 (Microbiology) at varying speeds. Findings : A universal portable green conveyor-based station(CoVDecon) capable of disinfecting daily use items such as; bags, lunch boxes, shoes, cloth, etc. was developed with applications in public places such as universities, airports, railway stations etc. On performing antibacterial, antifungal and antiviral studies it was observed that the machine at a speed of 3m/sec successfully eliminated 99.39% of gram- negative and gram-positive bacteria, 99% of the fungi and 99% of virus after 3 rounds. Efficacy against bacteria, fungi and virus dropped to 97%, 95% and 97% respectively on increasing the speed to 35m/sec. However, the efficacy might have reduced with an increase in speed due to less time of exposure of the test substance to UV lamps and plasma cluster ions The study indicated that the machine has successfully eliminated the test- microorganisms from contaminated object irrespective of its placement on the belt. Finally, the machine produces no toxic waste, is portable, and cost-efficient. Novelty: The developed conveyor tunnel uses UV and plasma cluster ions provides high efficacy antimicrobial activity by eliminating pathogens from the articles completely, including internal pockets and cavities.

Keywords: Biological decontamination, COVID­19, Plasma cluster ions, UV Irradiation, CBRN decontamination


  1. Kharche J, Kharche S, Kharche M. Case Study on COVID-19 Scenario over Highly Affected States of India. In: Intelligent Healthcare, EAI/Springer Innovations in Communication and Computing. (pp. 289-310) Springer, Cham. 2021.
  2. D’accolti M, Soffritti I, Bini F, Mazziga E, Mazzacane S, Caselli E. Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms. 2022;10(2):1–12. Available from: https://doi.org/10.3390/microorganisms10020225
  3. Murthy GS. An Automatic Disinfection System for Passenger Luggage at Airports and Train/Bus Stations. Transactions of the Indian National Academy of Engineering. 2020;5(2):295–298. Available from: https://doi.org/10.1007/s41403-020-00131-9
  4. Wilson AM, Gold DR, Beamer PI. Microbial Surface Transmission in the Built Environment and Management Methods. Microbiomes of the Built Environment. 2022;52(3):61–67. Available from: https://www.nae.edu/File.aspx?id=281060
  5. Ghedini E, Pizzolato M, Longo L, Menegazzo F, Zanardo D, Signoretto M. Which Are the Main Surface Disinfection Approaches at the Time of SARS-CoV-2? Frontiers in Chemical Engineering. 2021;2:1–17. Available from: https://doi.org/10.3389/fceng.2020.589202
  6. Kanesaka I, Katsuse AK, Takahashi H, Kobayashi I. Evaluation of a bipolar ionization device in inactivation of antimicrobial-resistant bacteria, yeast, Aspergillus spp. and human coronavirus. Journal of Hospital Infection. 2022;126:16–20. Available from: https://doi.org/10.1016/j.jhin.2022.04.004
  7. Anas A, Sobhanan J, Sulfiya KM, Jasmin C, Sreelakshmi PK, Biju V. Advances in photodynamic antimicrobial chemotherapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2021;49:100452. Available from: https://doi.org/10.1016/j.jphotochemrev.2021.100452
  8. Hijnen WAM, Beerendonk EF, Medema GJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research. 2006;40(1):3–22. Available from: https://doi.org/10.1016/j.watres.2005.10.030
  9. Beck SE, Rodriguez RA, Linden KG, Hargy TM, Larason TC, Wright HB. Wavelength Dependent UV Inactivation and DNA Damage of Adenovirus as Measured by Cell Culture Infectivity and Long Range Quantitative PCR. Environmental Science & Technology. 2014;48(1):591–598. Available from: https://doi.org/10.1021/es403850b
  10. Eischeid AC, Linden KG. Molecular Indications of Protein Damage in Adenoviruses after UV Disinfection. Applied and Environmental Microbiology. 2011;77(3):1145–1147. Available from: https://doi.org/10.1128/AEM.00403-10
  11. Beck SE, Ryu H, Boczek LA, Cashdollar JL, Jeanis KM, Rosenblum JS, et al. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Research. 2017;109:207–216. Available from: https://doi.org/10.1016/j.watres.2016.11.024
  12. Sharma N, Chaudhary M, Butola BS, Jeyabalaji JK, Pathak DP, Sharma RK. Preparation, characterization and evaluation of the zinc titanate and silver nitrate incorporated wipes for topical chemical and biological decontamination. Materials Science and Engineering: C. 2019;96:183–196. Available from: https://doi.org/10.1016/j.msec.2018.10.056
  13. Mohapatra S. Chapter 59 - Sterilization and Disinfection. In: Prabhakar H., ed. Essentials of Neuroanesthesia. (pp. 929-944) Academic Press. 2017.
  14. Rainina EI, Mccune DE, Luna ML, Cook JE, Soltis MA, Demons ST, et al. Exploratory Use of Microaerosol Decontamination Technology (PAEROSOL) in Enclosed, Unoccupied Hospital Setting. Office of Scientific and Technical Information (OSTI). 2012. Available from: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-21421.pdf
  15. Haydar H, Kumar J, Cadnum J, Zangla E, Hoyen C, Donskey C. Evaluation of No-Touch Technologies for Decontamination of Toys in Pediatric Healthcare Settings. Infection Control & Hospital Epidemiology. 2020;41(S1):s229. Available from: https://doi.org/10.1017/ice.2020.776
  16. Pereira AR, Braga DFO, Vassal M, Gomes IB, Simões M. Ultraviolet C irradiation: A promising approach for the disinfection of public spaces? Science of The Total Environment. 2023;879:1–22. Available from: https://doi.org/10.1016/j.scitotenv.2023.163007
  17. Rutala WA, Weber DJ. Disinfection, sterilization, and antisepsis: An overview. American Journal of Infection Control. 2016;44(5):E1–E6. Available from: https://doi.org/10.1016/j.ajic.2015.10.038
  18. Bartolomeu M, Braz M, Costa P, Duarte J, Pereira C, Almeida A. Evaluation of UV-C Radiation Efficiency in the Decontamination of Inanimate Surfaces and Personal Protective Equipment Contaminated with Phage ϕ6. Microorganisms. 2022;10(3):1–12. Available from: https://doi.org/10.3390/microorganisms10030593
  19. Lukes P, Brisset JL, Locke BR. Biological Effects of Electrical Discharge Plasma in Water and in Gas–Liquid Environments. Plasma Chemistry and Catalysis in Gases and Liquids. 2012;p. 309–352. Available from: https://doi.org/10.1002/9783527649525.ch8


© 2023 Nair et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.