• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 36, Pages: 3801-3819

Original Article

Dynamic simulation and design of a simple hexapod robot

Received Date:07 April 2020, Accepted Date:23 April 2020, Published Date:12 October 2020


Background/Objectives: For motions in off-road navigation, including sandy or wet natural environments and space explorations legged machines, mimicking anatomy of legged animals are efficient. However, the traditional full-actuated legged robots are heavy with complex actuation and control systems, as for each degree of freedom separate actuator is used. The purpose of this work is to develop a kinematic model using a single-actuator for hexapod legged robot taking advantage of bio-inspiration and mechanism design techniques. Methods/Statistical analysis: A vector analysis method was used for measuring the system kinematics equations. The simulation of the walking process was performed using MATLAB. A real prototype of the system has been fabricated based on the design, which is not bulky due to use of single motor, and does not require complex control and sensor systems. Findings: Simulations showed that the kinematic model along with the hypothesis on the ground interaction describes the locomotion, which can be used where robots with low-speed repositioning are required. Theoretical analysis, virtual prototype simulations, as well as initial experiments with the physical prototype, showed an efficient functionality of the system. Novelty/Applications: The design and kinematic model can be used for developing low-energy environmental robots for remote areas with occasional relocation requirements.

Keywords: Biomimetic environmental robot; kinematic analysis; mechanism design; tripod gait; walking mechanism


  1. Bhandari VB. Design of Machine Elements. In: Tata McGraw-Hill Education. (pp. 944) 2017.
  2. Acary V, Brogliato B. Numerical Methods for Nonsmooth Dynamical Systems - Applications in Mechanics and Electronics. (1st). (pp. 525) Berlin Heidelberg. Springer-Verlag. 2008.
  3. Al-Bender F, Lampaert V, Swevers J. The generalized Maxwell-slip model: a novel model for friction Simulation and compensation. IEEE Transactions on Automatic Control. 2005;50(11):1883–1887. doi: 10.1109/tac.2005.858676
  4. Al-Bender F, Symens W, Swevers J, Brussel HV. Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems. International Journal of Non-Linear Mechanics. 2004;39(10):1721–1735. doi: 10.1016/j.ijnonlinmec.2004.04.005
  5. Mehdigholi H, Akbarnejad S. Optimization of Watt's Six-Bar Linkage to Generate Straight and Parallel Leg Motion. International Journal of Advanced Robotic Systems. 2012;9(1):22. doi: 10.5772/50917
  6. R MAK, Design. Synthesis And Simulation Of Four Bar Mechanism For Eliminate The Plowing Depth Fluctuations In Tractors. International Journal of Engineering Research and Applications (IJERA). 2013;3:953–956.
  7. Abdulkadar M, Deshmukh B. Simulation of Four Bar Mechanism For Path Generation. International Journal of Emerging Technology and Advanced Engineering. 2013;3:637–640.
  8. Vanitha U, Premalatha V, Nithinkumar M. Mechanical Spider Using Klann Mechanism. Scholars Journal of Engineering and Technology (SJET). 2015;3:737–740.
  9. Arinjay PS, Khot VJ. Design of Bio-Mimic Hexapod. IOSR Journal of Mechanical and Civil Engineering. 2013;10:14–20.
  10. Roy SS, Singh AK, Pratihar DK. Analysis of Six-legged Walking Robots. In: 14th National Conference on Machines and Mechanisms (NaCoMM09). NIT, Durgapur, India. p. 259–265.
  11. Deepak D, Pathmasharma S. Design and Fabrication of Kinematic Robotic Walker with Left and Right Motion with Camera. SSRG International Journal of Mechanical Engineering. 2017;4:53–56.
  12. Bombled Q, Verlinden O. Current Sensing in a Six-Legged Robot. In: SG, KLaTA., eds. IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments. (pp. 73-80) Dordrecht. Springer. 2011.
  13. Singh R, Bera TK. Walking Model of Jansen Mechanism-Based Quadruped Robot and Application to Obstacle Avoidance. Arabian Journal for Science and Engineering. 2020;45(2):653–664. doi: 10.1007/s13369-019-04135-8
  14. Garcia E, Arevalo JC, Munoz G. On the biomimetic design of agile-robot legs. Sensors. 2011;11:11305–11334.
  15. Grzelczyk D, Szymanowska O, Awrejcewicz J. Kinematic and dynamic simulation of an octopod robot controlled by different central pattern generators. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2019;233(4):400–417. doi: 10.1177/0959651818800187
  16. Leng X, Piao S, Chang L, He Z, Zhu Z. Dynamic running hexapod robot based on high-performance computing. The Journal of Supercomputing. 2020;76(2):844–857. doi: 10.1007/s11227-019-02988-2
  17. Gao H, Liu Y, Ding L. Low Impact Force and Energy Consumption Motion Planning for Hexapod Robot with Passive Compliant Ankles. Journal of Intelligent & Robotic Systems. 2019;94:349–370.
  18. Wang G, Ding L, Gao H, et al. Minimizing the Energy Consumption for a Hexapod Robot Based on Optimal Force Distribution. IEEE Access . 2019.
  19. Zhou X, Wei W, Gao Y. Research on Terrain Recognition for Gait Selection of Hexapod Robot. IOP Conference Series: Materials Science and Engineering. 2019;p. 12072.
  20. Yang JM. Fault-Tolerant Gait Planning for a Hexapod Robot Walking over Rough Terrain. Journal of Intelligent and Robotic Systems. 2009;54:613–627.
  21. Dürr V, Arena PP, Cruse H. Integrative biomimetics of autonomous hexapedal locomotion. Frontiers in neurorobotics. 2019;13.
  22. Saranli U, Buehler M, Koditschek DE. RHex: A Simple and Highly Mobile Hexapod Robot. The International Journal of Robotics Research. 2001;20(7):616–631. doi: 10.1177/02783640122067570
  23. Tedeschi F, Carbone G. Design Issues for Hexapod Walking Robots. Robotics. 2014;3(2):181–206. doi: 10.3390/robotics3020181
  24. Desai SG, Annigeri AR, TimmanaGouda A. Analysis of a new single degree-of-freedom eight link leg mechanism for walking machine. Mechanism and Machine Theory. 2019;140:747–764. doi: 10.1016/j.mechmachtheory.2019.06.002
  25. Zang H, Zhao D, Shen L. Multi-Legged Robot Based on Single Continuous Driving Bionic Leg. International Journal of Robotics and Automation. 2019;34(6). doi: 10.2316/j.2019.206-0058
  26. Marghitu DB. Springer Science & Business Media. 2009.


© 2020 Al-Shammari.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.