• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 27, Pages: 2309-2316

Original Article

Effect of Cu2+ substitution on structure, morphology, and magnetic properties of Mg-Zn spinel ferrite

Received Date:28 March 2021, Accepted Date:02 August 2021, Published Date:18 August 2021


Objective: To prepare Cu doped Mg0:5􀀀xCuxZn0:5Fe2O4 (x = 0.0, 0.05, 0.1, 0.15,0.2 and 0.25) spinel ferrites materials and study the structure, morphology, and magnetic properties. Methods: Cu doped Mg-Zn spinel ferrites are magnetic and highly resistive materials. They were synthesized by the method of solid-state reaction and characterized by x-ray diffraction (XRD), field effect scanning electron microscopy (FESEM), Fourier transform infrared (FTIR), andvibrating sample magnetometer (VSM) for their structural, compositional,morphological, functional properties. They are with spinel structure under Fd-3m space group. Their crystallite size was 44.58 nm to 31.02 nm range after calcined at 1000 oC. Their spinel structure was confirmed with FT-IR analysis, whose absorption bands were 598.84 – 580.40 cm-1 and 405.35 - 402.15 cm-1 range for higher and lower frequency, respectively. The value of coercivity is in the range 146.33 - 9.427 Oe with the variation of content. The lower values of the coercivity indicated the soft ferrimagnetic nature of the synthesized materials. Findings/ Application: Substitution of non-magnetic Cu2+ ions strongly influenced the structural and magnetic properties of magnesium ferrites.

Keywords: Cu doped MgZn ferrite; XRD; FTIR; FESEM; Coercivity


  1. Himakar P, Murali N, Parajuli D, Veeraiah V, Samatha K, Mammo TW, et al. Magnetic and DC Electrical Properties of Cu Doped Co-Zn Nanoferrites. Journal of Electronic Materials. 2021:1–9. Available from: https://link.springer.com/article/10.1007/s11664-021-08760-8
  2. Ramakrishna A, Murali N, Mammo TW, Samatha K, Veeraiah V. Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M= Ni, Zn, and Mg) ferrite nanoparticles. Physica B: Condensed Matter. 2018;534:134–140. Available from: https://doi.org/10.1016/j.physb.2018.01.033
  3. Mehaka, Somnath, Sharma I, Batoo KM, Kumar G. Cation distribution and structural study of copper doped magnesium-manganese nanoferrites. Materials Today: Proceedings 2020. 26:3473–3477. Available from: https://doi.org/10.1016/j.matpr.2020.01.203
  4. Raju G, Murali N, Prasad MSNA, Suresh B, Babu DA, Kiran MG, et al. Effect of chromium substitution on the structural and magnetic properties of cobalt ferrite. Materials Science for Energy Technologies. 2019;2(1):78–82. Available from: https://doi.org/10.1016/j.mset.2018.11.001
  5. Mercy SJ, Murali N, Ramakrishna A, Ramakrishna Y, Veeraiah V, Samatha K. Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted Cobalt ferrite. Applied Physics A. 2020;2020(126):1–13. Available from: https://doi.org/10.1007/s00339-020-04048-6
  6. Desai SS, Shirsath SE, Batoo KM, Adil SF, Khan M, Patange SM. Influence of Zn-Zr substitution on the crystal chemistry and magnetic properties of CoFe2O4 nanoparticles synthesized by sol-gel method. Physica B: Condensed Matter. 2020;596(412400). Available from: https://doi.org/10.1016/j.physb.2020.412400
  7. Ramakrishna A, Murali N, Margarette SJ, Samatha K, Veeraiah V. Comparative study of synthesis, structural and magnetic properties of Cu2+ substituted Co-Ni, Co-Zn and Co-Mg nano ferrites. Physica B: Condensed Matter. 2018;530:251–257. Available from: https://doi.org/10.1016/j.physb.2017.11.063
  8. Rao PA, Raghavendra V, Suryanarayana B, Paulos T, Murali N, Varma PP, et al. Cadmium substitution effect on structural, electrical and magnetic properties of Ni-Zn nano ferrites. Results in Physics. 2020;19(103487). Available from: https://doi.org/10.1016/j.rinp.2020.103487
  9. Mammo TW, Murali N, Sileshi YM, Arunamani T. Effect of Ce-substitution on structural, morphological, magnetic and DC electrical resistivity of Co-ferrite materials. Physica B: Condensed Matter. 2018;531(15):164–170. Available from: https://doi.org/10.1016/j.physb.2017.12.049
  10. Dabagh S, Ati AA, Ghoshal SK, Zare S, Rosnan RM, Jbara AS, et al. Cu2+ and Al3+ co-substituted cobalt ferrite: structural analysis, morphology and magnetic properties. Bulletin of Materials Science. 2016;39:1029–1037. Available from: https://link.springer.com/article/10.1007/s12034-016-1233-8
  11. Mammo TW, Kumari CV, Margarette SJ, Ramakrishna A, Vemuri R, Rao YS, et al. Synthesis, structural, dielectric and magnetic properties of cobalt ferrite nanomaterial prepared by sol-gel autocombustion technique. Physica B: Condensed Matter. 2020;581(15). Available from: https://doi.org/10.1016/j.physb.2019.411769
  12. Maria KH, Choudhury S, Hakim MA. Structural phase transformation and hysteresis behavior of Cu-Zn ferrites. International Nano Letters. 2013;3:1–10. Available from: https://link.springer.com/article/10.1186/2228-5326-3-42
  13. Tedjieukeng HMK, Tsobnang PK, Fomekong RL, Etape EP, Joy PA, Delcorte A, et al. Structural characterization and magnetic properties of undoped and copper-doped cobalt ferrite nanoparticles prepared by the octanoate coprecipitation route at very low dopant concentrations. RSC advances . 2018;8:38621–38630. Available from: https://doi.org/10.1039/C8RA08532C
  14. Torkian S, Ghasemi A, Razavi S, Tavoosi RM. Structural and Magnetic Properties of High Coercive Al-Substituted Strontium Hexaferrite Nanoparticles. Journal Superconductivity and Novel Magnetism. 2016;29:1627–1640. Available from: https://link.springer.com/article/10.1007%2Fs10948-016-3450-1
  15. Desai SS, Shirsath SE, Batoo KM, Adil SF, Khan M, Patange SM. Influence of Zn-Zr substitution on the crystal chemistry and magnetic properties of CoFe2O4 nanoparticles synthesized by sol-gel method. Physica B: Condensed Matter. 2020;596(1). Available from: https://doi.org/10.1016/j.physb.2020.412400
  16. Kurian M, Thankachan S, Nair DS, Aswathy EK, Babu A, Thomas A, et al. Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. Journal of Advanced Ceramics. 2015;4:199–205. Available from: https://link.springer.com/article/10.1007/s40145-015-0149-x
  17. Qamar S, Akhtar MN, Batoo KM, Raslan EH. Structural and magnetic features of Ce doped Co-Cu-Zn spinel nanoferrites prepared using sol gel self-ignition method. Ceramics International. 2020;46:14481–14487. Available from: https://doi.org/10.1016/j.ceramint.2020.02.246
  18. Slatineanu T, Iordan A, Palamaru M, Caltun O, Gaftonand V, Leontie L. Synthesis and characterization of nanocrystalline Zn ferrites substituted with Ni. Materials Research Bulletin. 2011;46(9):1455–1460. Available from: https://doi.org/10.1016/j.materresbull.2011.05.002
  19. Xavier S, Thankachan S, Jacob B, Mohammed E. Effect of sintering temperature on the structure and magnetic properties of cobalt ferrite nanoparticles. Nanosystems: Physics; Chemistry; Mathematics. 2013;4(3):430–437.
  20. Chen N, Gu M. Microstructure and microwave absorption properties of Y-subtituted Ni-Zn Ferrites. Open Journal of Metal. 2012;37:37–41. Available from: 10.4236/ojmetal.2012.22006
  21. Hezam FA, Khalifa NO, Nur O, Mustafa MA. Synthesis and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 (0.0≤ x≤ 0.5) nanocrystalline spinel ferrites. Materials Chemistry and Physics. 2021;257. Available from: https://doi.org/10.1016/j.matchemphys.2020.123770


© 2021 Ch Komali et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.