• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 4, Pages: 297-309

Original Article

Tracing the exact location of failures in underground optical networks using LSTM deep learning model

Received Date:04 November 2021, Accepted Date:29 December 2021, Published Date:02 February 2021


Failures mostly occur in the underground optical networks, and these failures come with some consequences such as interrupted services, damaged brand reputation, revenue loss, and subscribers churn. Several fault tracing techniques in optical networks, notably OTDR, OFDR, T-OTDR, among many others have been developed, but their main challenge has been the impreciseness of failure location measurements. These challenges resulted in delays in the fault tracing processes. This paper provides a solution to the identified challenge by designing a predictive model to determine the damaged underground fiber cable’s exact location. We collected datasets comprising the OTDR measurements, the number of spliced joints, the number of enclosure boxes, and the wells (chambers) along the failed underground optical transmission path. We adopted an LSTM deep learning predictive model to find the exact distance of failure in the underground optical networks. Using deep learning predictive models to tracing faults has been deployed in many network and transmission systems such as routing, fault management, link optimization, modulation, etc. However, tracing failures in underground optical networks has not yet received much attention, according to literature. Hence, the motivation to design an intelligent predictive model based on the LSTM deep learning technique to predict the exact location of failure in underground optical networks. Our study performed very well with high accuracy of 0.00016673. This result signifies that the predictive model could promptly predict the exact spot of failures in underground optical networks. This is the first time an LSTM model has been used to accurately predict the precise location of failures in underground optical networks. In addition, a computational algorithm was developed as a supporting feature to enhance the performance of the intelligent model.

Keywords: Fiber cable cuts; fault tracing; underground optical networks; LSTM; predictive model


  1. Nyarko‐Boateng O, Xedagbui FEB, Adekoya AF, Weyori BA. Fiber optic deployment challenges and their management in a developing country: A tutorial and case study in Ghana. Engineering Reports. 2020;2(2). Available from: https://dx.doi.org/10.1002/eng2.12121
  2. Hjort J, Poulsen J. The Arrival of Fast Internet and Employment in Africa. American Economic Review. 2019;109(3):1032–1079. Available from: https://dx.doi.org/10.1257/aer.20161385
  3. Thrane J, Wass J, Piels M, Diniz JCM, Jones R, Zibar D. Machine Learning Techniques for Optical Performance Monitoring From Directly Detected PDM-QAM Signals. Journal of Lightwave Technology. 2017;35(4):868–875. Available from: https://dx.doi.org/10.1109/jlt.2016.2590989
  4. Etudaye MM, Azi SO. Measurement of signal losses on optical fibre cable due to vibrations using optical time domain reflectometer. Ghana Journal of Geography. 2019;11(2):185–198.
  5. Hayford-Acquah T, Asante B. Causes of Fiber Cut and the Recommendation to Solve the Problem. IOSR Journal of Electronics and Communication Engineering. 2017;12(01):46–64. Available from: https://dx.doi.org/10.9790/2834-1201014664
  6. Ali T, Ameen JH. Study of Fault Detection Techniques for Optical Fibers. Zanco Journal of Pure and Applied Sciences. 2019;31(s3):143–149. Available from: https://doi.org/10.21271/ZJPAS.31.s3.20
  7. Zhao Q, Xia L, Wan C, Hu J, Jia T, Gu M, et al. Long-haul and high-resolution optical time domain reflectometry using superconducting nanowire single-photon detectors. Scientific reports. 2015;5.
  8. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press. 2016.
  9. Eriksson TA, Bulow H, Leven A. Applying Neural Networks in Optical Communication Systems: Possible Pitfalls. IEEE Photonics Technology Letters. 2017;29(23):2091–2094. Available from: https://dx.doi.org/10.1109/lpt.2017.2755663
  10. Argyris A, Bueno J, Fischer I. Photonic machine learning implementation for signal recovery in optical communications. Scientific Reports. 2018;8(1). Available from: https://dx.doi.org/10.1038/s41598-018-26927-y
  11. Kushnir D, Gohil G, Sayeed Z, Uzunalioglu H. Predicting outages in radio networks with alarm data. IEEE/ACM International Symposium on Quality of Service. 2018.
  12. Zhu M, Ye K, Xu CZ. Network anomaly detection and identification based on deep learning methods. In: CLOUD. (pp. 219-234) 2018.
  13. Ali TA, Ameen JJH. Study of Fault Detection Techniques for Optical Fibers. ZANCO Journal of Pure and Applied Sciences. 2019;31(s3):143–149.
  14. Xia TJ, Wellbrock GA, Huang M, Salemi M, Chen Y, Wang T, et al. First Proof That Geographic Location on Deployed Fiber Cable Can Be Determined by Using OTDR Distance Based on Distributed Fiber Optical Sensing Technology. Optical Fiber Communication Conference (OFC) 2020, OSA Technical Digest. 2020.
  15. Mamun A, Beyaz SMA, M. LSTM Recurrent Neural Network (RNN) for Anomaly Detection in Cellular Mobile Networks. Lecture Notes in Computer Science. 2019;p. 222–237. Available from: https://doi.org/10.1007/978-3-030-19945-6_15
  16. Abdelli K, Rafique D, Pachnicke S. Machine Learning Based Laser Failure Mode Detection. 21st International Conference on Transparent Optical Networks (ICTON). 2019. Available from: https://doi.org/10.1109/icton.2019.8840267
  17. Wei B, Kawakami W, Kanai K, Katto J, Wang S. TRUST: A TCP Throughput Prediction Method in Mobile Networks. In: 2018 IEEE Global Communications Conference (GLOBECOM). (pp. 1-6) 2018.
  18. Nyarko-Boateng O, Adekoya AF, Weyori BA. Predicting the actual location of faults in underground optical networks using linear regression. Engineering Reports. 2020.
  19. Salmela L, Tsipinakis N, Foi A, Billet C, Dudley JM, Genty G. Predicting ultrafast non-linear dynamics in fibre optics with a recurrent neural network. 2020.
  20. Samadi P, Amar D, Lepers C, Lourdiane M, Bergman K. Quality of transmission prediction with machine learning for dynamic operation of optical WDM networks. 2017 European Conference on Optical Communication (ECOC). 2017;p. 1–3.
  21. Maimo LF, Gomez ALP, Clemente FJG, Perez MG, Perez GM. A Self-Adaptive Deep Learning-Based System for Anomaly Detection in 5G Networks. IEEE Access. 2018;6:7700–7712. Available from: https://dx.doi.org/10.1109/access.2018.2803446
  22. Wang C, Fu S, Xiao Z, Tang M, Liu D. Long Short-Term Memory Neural Network (LSTM-NN) Enabled Accurate Optical Signal-to-Noise Ratio (OSNR) Monitoring. Journal of Lightwave Technology. 2019;37(16):4140–4146. Available from: https://dx.doi.org/10.1109/jlt.2019.2904263
  23. Qin X, Yang C, Zhou Q, Tian F, Feng J, Xu C, et al. Low-complexity Bi-directional Recurrent Neural Network Equalizer for Short-Range Optical Interconnect Links. Asia Communications and Photonics Conference. 2019;p. 4–70.
  24. Wang D, Zhang M, Zhang Z, Li J, Gao H, Zhang F, et al. Machine Learning-Based Multifunctional Optical Spectrum Analysis Technique. IEEE Access. 2019;7:19726–19737.
  25. Aladin S, Allogba S, Tran AVS, Tremblay C. Recurrent Neural Networks for Short-Term Forecast of Lightpath Performance. Optical Fiber Communication Conference. 2020;p. 2–24.


© 2021 Nyarko-Boateng et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.