• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 48, Pages: 4708-4722

Original Article

Electrically conducting fluid flow with Nanoparticles in an inclined tapering Stenoses Artery through porous medium

Received Date:30 November 2020, Accepted Date:22 December 2020, Published Date:04 January 2020


Objectives: A Mathematical Model is built in an inclined tapered artery having permeable walls for a blood flow with nanoparticles through porous media. Methods/Statistical analysis: The Nanoparticle phenomena and Temperature profiles are determined using Homotopy Perturbation Method(HPM). Findings: Analysis on resistance (or) Impedance to the  flow and shear stress distribution in the stenotic area with regard to different flow parameters with stenosis height has been estimated by deriving the flow characteristic expressions and the solutions obtained. For various flow parameters, the variations of flow resistance as well as shear stress with stenosis height are illustrated graphically. For study of the fluid flow properties, streamline patterns are also drawn. It is remarkable to take note that,  in converging (x < 0), non-tapered (x = 0) and diverging regions (x > 0), the flow patterns aresignificantly impacted by magnetic field existence.

Keywords: Porous medium; tapered artery; Stenosis; Nanofluid; magnetic parameter


  1. Padmanabhan N. Mathematical model of arterial stenosis. Medical & Biological Engineering & Computing. 1980;18(3):281–286. Available from: https://dx.doi.org/10.1007/bf02443380
  2. Shukla JB, Parihar RS, Rao BR. Effects of stenosis on non-Newtonian flow of the blood in an artery. Bulletin of Mathematical Biology. 1980;42(3):283–294. Available from: https://doi.org/10.1007/BF02460787
  3. Prasad KM, Yasa PR. Flow of non-Newtonian fluid through a permeable artery having non-uniform cross section with multiple stenosis. Journal of Naval Architecture and Marine Engineering. 2020;17:31–38. Available from: https://dx.doi.org/10.3329/jname.v17i1.40942
  4. Prasad KM, Yasa PR. Mathematical Modelling of an Electrically conducting Fluid flow in an Inclined Permeable Tube with Multiple Stenoses. International Journal of Innovative Technology and Exploring Engineering. 2019;9(1):3915–3921.
  5. Sinha A, Misra JC. Influence of Slip Velocity on blood flow through an artery with Permeable Wall: A Theoretical Study. International Journal of Biomathematics. 2012;05(05). Available from: https://dx.doi.org/10.1142/s1793524511001842
  6. Akbar NS, Rahman SU, Ellahi R, Nadeem S. Nano fluid flow in tapering stenosed arteries with permeable walls. International Journal of Thermal Sciences. 2014;85:54–61. Available from: https://dx.doi.org/10.1016/j.ijthermalsci.2014.06.009
  7. Crawford FW, Hoover GM. Flow of fluids through porous mediums. Journal of Geophysical Research. 1966;71(12):2911–2917. Available from: https://dx.doi.org/10.1029/jz071i012p02911
  8. Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, et al. Nanofluid flow and heat transfer in porous media: A review of the latest developments. International Journal of Heat and Mass Transfer. 2017;107:778–791. Available from: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.074
  9. Ramamurthy G, Shanker B. Magnetohydrodynamic effects on blood flow through a porous channel. Medical & Biological Engineering & Computing. 1994;32(6):655–659. Available from: https://dx.doi.org/10.1007/bf02524242
  10. El-Shehawey EF, Husseny SZA. Peristaltic transport of a magneto-fluid with porous boundaries. Applied Mathematics and Computation. 2002;129(2-3):421–440. Available from: https://dx.doi.org/10.1016/s0096-3003(01)00054-6
  11. Mandal PK. An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis. International Journal of Non-Linear Mechanics. 2005;40(1):151–164. Available from: https://doi.org/10.1016/j.ijnonlinmec.2004.07.007
  12. Tzirtzilakis EE. A mathematical model for blood flow in magnetic field. Physics of Fluids. 2005;17(7). Available from: https://dx.doi.org/10.1063/1.1978807
  13. Eldesoky IM. Slip effects on the unsteady MHD pulsatile blood flow through porous medium in an Artery under the effect of body acceleration. International Journal of Mathematics and Mathematical Sciences. 2012;2012:1–26. Available from: https://dx.doi.org/10.1155/2012/860239


© 2020 Maruthi Prasad & Yasa.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.