• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 40, Pages: 3007-3013

Original Article

Electrochemical Fabrication and Characterization of a Gold-Polyaniline /Multi-walled Carbon Nanotubes/Manganese Dioxide Composite Electrode

Received Date:01 September 2021, Accepted Date:13 November 2021, Published Date:29 November 2021

Abstract

Objectives: Electrochemical fabrication and characterization of a gold-polyaniline/multi-walled carbon nanotubes/manganese dioxide (Au-PANI/MWCNT/MnO2) composite electrode. Methods: The MnO2 nanoparticles (NPs) were prepared by heating 1% Mn(NO3)2.4H2O at 100 0C for 24 h and characterized by using Fourier transform infrared spectroscopy (FTIR) and Ultraviolet/visible (UV/Vis) spectrophotometry. The size and shape of the NPs were determined from the transmission electron microscopic image. MWCNTs were functionalized with carboxyl groups on their sidewalls by sonicating in H2SO4:HNO(3:1, v/v) for 12 h at 40 kHz. The functionalization was further confirmed through UV/Vis spectrophotometry. The working Au surface was first activated and then electropolymerized by using 50 μl of 0.005% C6H5NH2 in 01 N HCl followed by electrodeposition with 0.1% each of the c-MWCNTs and manganese oxide NPs through 20 cycles of cyclic voltammetry (-0.2-0.9 mV) at the rate of 20 mV/s. The Au-PANI/MWCNT/MnO2 composite was then characterized by using FTIR spectra and scanning electron microscopy. Findings: An Au-PANI/MWCNT/MnO2 composite electrode was fabricated and characterized. Novelty: The nanocomposite electrode was designed by using screen printed electrode, which is very simple to construct, portable, and economic. The composite can be used to design a sensors or sensor array in future.

Keywords: Electrochemical Fabrication, Manganese Dioxide, Multi-walled Carbon Nanotubes, Nanocomposite Synthesis, Screen Printed Electrodes

References

  1. Fapyane D, Berillo D, Marty JL, Revsbech NP. Urea Biosensor Based on a CO2 Microsensor. ACS Omega. 2020;5(42):27582–27590. Available from: https://dx.doi.org/10.1021/acsomega.0c04146
  2. Babapoor A, Hajimohammadi R, Jokar SM, Paar M. Biosensor Design for Detection of Mercury in Contaminated Soil Using Rhamnolipid Biosurfactant and Luminescent Bacteria. Journal of Chemistry. 2020;2020:1–8. Available from: https://dx.doi.org/10.1155/2020/9120959
  3. Paul M, Tscheuschner G, Herrmann S, Weller MG. Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor. Biosensors. 2020;10(8):89. Available from: https://dx.doi.org/10.3390/bios10080089
  4. Yang T, Duncan TV. Challenges and potential solutions for nanosensors intended for use with foods. Nature Nanotechnology. 2021;16(3):251–265. Available from: https://dx.doi.org/10.1038/s41565-021-00867-7
  5. Saber NB, Mezni A, Alrooqi A, Altalhi T. A review of ternary nanostructures based noble metal/semiconductor for environmental and renewable energy applications. Journal of Materials Research and Technology. 2020;9(6):15233–15262. Available from: https://dx.doi.org/10.1016/j.jmrt.2020.10.090
  6. Fu S, Sun Z, Huang P, Li Y, Hu N. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science. 2019;1(1):2–30. Available from: https://dx.doi.org/10.1016/j.nanoms.2019.02.006
  7. PB, Aman P, Akash S, KAGM. A mini review: Polymer-matrix nanocomposites and its synthesis techniques. AIP Conference Proceedings. 2019;2142(1):150011. doi: 10.1063/1.5122560
  8. Vinyas M, Athul SJ, Harursampath D, Loja M, Thoi TN. A comprehensive review on analysis of nanocomposites: from manufacturing to properties characterization. Materials Research Express. 2019;6(9):092002. Available from: https://dx.doi.org/10.1088/2053-1591/ab3175
  9. Silva M, Pinho IS, Covas JA, Alves NM, Paiva MC. 3D printing of graphene-based polymeric nanocomposites for biomedical applications. Functional Composite Materials. 2021;2(1):8–29. Available from: https://dx.doi.org/10.1186/s42252-021-00020-6
  10. Kolzunova L, Shchitovskaya E, Karpenko M. Polymethylolacrylamide/AuNPs Nanocomposites: Electrochemical Synthesis and Functional Characteristics. Polymers. 2021;13(14):2382. Available from: https://dx.doi.org/10.3390/polym13142382
  11. Liu S, Xu H, Ou J, Li Z, Yang S, Wang J. A feasible approach to the fabrication of gold/polyaniline nanofiber composites and its application as electrocatalyst for oxygen reduction. Materials Chemistry and Physics. 2012;132(2-3):500–504. Available from: https://dx.doi.org/10.1016/j.matchemphys.2011.11.060
  12. Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. Journal of Power Sources. 2007;171(2):1062–1068. Available from: https://dx.doi.org/10.1016/j.jpowsour.2007.05.103
  13. Saiful Izwan Abd R, Latif AA, Sharif Z. Polymerisation of protonic polyaniline/multi-walled carbon nanotubes-manganese dioxide nanocomposites. Journal of Physical Science. 2009;20:27–34.
  14. Tran LT, Tran HV, Tran T, Nguyen NT, Bui DV, Tran PQ, et al. A Highly Sensitive Electrochemical DNA Sensor Based on Nanostructured Electrode of Multi-Walled Carbon Nanotubes/Manganese Dioxide Nano-Flowers-like/Polyaniline Nanowires Nanocomposite. Journal of The Electrochemical Society. 2021;168(5):057518. Available from: https://dx.doi.org/10.1149/1945-7111/ac001b
  15. Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M. A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Transactions. 2012;41(36):11026. Available from: https://dx.doi.org/10.1039/c2dt30553d
  16. Dash SK, Sharma M, Khare S, Kumar A. Carbon-Mercaptooctadecane/Carboxylated Multi-walled Carbon Nanotubes Composite Based Genosensor for Detection of Bacterial Meningitis. Indian Journal of Microbiology. 2014;54(2):170–177. doi: 10.1007/s12088-013-0435-7
  17. Dash SK, Sharma M, Kumar A, Khare S, Kumar A. Carbon composite-based DNA sensor for detection of bacterial meningitis caused by Neisseria meningitidis. Journal of Solid State Electrochemistry. 2014;18(10):2647–2659. Available from: https://dx.doi.org/10.1007/s10008-014-2525-9
  18. Dash SK, Sharma M, Khare S, Kumar A. rmpM Genosensor for Detection of Human Brain Bacterial Meningitis in Cerebrospinal Fluid. Applied Biochemistry and Biotechnology. 2013;171(1):198–208. Available from: https://dx.doi.org/10.1007/s12010-013-0339-3
  19. Kumara BP, Karikkatb S. Synthesis, Characterization of Nano MnO2 and its Adsorption Characteristics Over an Azo Dye. Research & Reviews: Journal of Material Sciences. 2014;02(01). Available from: https://dx.doi.org/10.4172/2321-6212.1000116
  20. Moon SA, Salunke BK, Alkotaini B, Sathiyamoorthi E, Kim BS. Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnology. 2015;9(4):220–225. Available from: https://dx.doi.org/10.1049/iet-nbt.2014.0051
  21. Racik KM, Guruprasad K, Mahendiran M, Madhavan J, Maiyalagan T, Raj MVA. Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability. Journal of Materials Science: Materials in Electronics. 2019;30(5):5222–5232. Available from: https://dx.doi.org/10.1007/s10854-019-00821-3
  22. Saha RH, Yousuf MMA, Hasan SMAB. Poly(vinyl alcohol)-MnO2 nanocomposite films as UV-shielding materials. Polymer Bulletin. 2018;75(12):5629–5643. doi: 10.1007/s00289-018-2355-5
  23. Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nature Communications. 2020;11(1). Available from: https://dx.doi.org/10.1038/s41467-020-15889-3
  24. Alizadeh ZH, Alireza Z, Akbar SA, Mohammad AA, Mojtaba F. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Scientific Reports. 2016;6(1):26508. doi: 10.1038/srep26508
  25. Nguyen TT, Pham NT, Dinh TTM, Vu TT, Nguyen HS, Tran LD. Electrodeposition of Hydroxyapatite-Multiwalled Carbon Nanotube Nanocomposite on Ti6Al4V. Advances in Polymer Technology. 2020;2020:1–10. Available from: https://dx.doi.org/10.1155/2020/8639687
  26. Xiangmin M, Chung-Nga K, Kasipandi V, Zongbing L, Guanjun Y, Chung-Hang L, et al. Leung Chung-Hang, Ma Dik-Lung. A cyclometalated iridium(III) complex used as a conductor for the electrochemical sensing of IFN-γ. Scientific Reports. 2017;7(1). doi: 10.1038/srep42740
  27. Anita G, Aleksandar P, Perica P, Aleksandar TD, Maurizio A. MWCNT/Polyaniline nanocomposites used for pH nanosensors of marine waters. In: CM, DPE, EME, GG, MA, MR., eds. Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. (pp. 231-239) Springer. 2018.
  28. Stobinski L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, et al. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. Journal of Alloys and Compounds. 2010;501(1):77–84. Available from: https://dx.doi.org/10.1016/j.jallcom.2010.04.032
  29. Amaral MTLD, Henrique CF, Barros MJP, Batista TD, Nelson D. Lemes Ana Paula. Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. Journal of Materials Research. 2015;30(1):55–65. doi: 10.1557/jmr.2014.303
  30. Scheibe B, Borowiak-Palen E, Kalenczuk RJ. Oxidation and reduction of multiwalled carbon nanotubes — preparation and characterization. Materials Characterization. 2010;61(2):185–191. Available from: https://dx.doi.org/10.1016/j.matchar.2009.11.008
  31. Ali AM, Bakather O, Yehya T, Bassam AT. Abuilaiwi Faraj Ahmad, Fettouhi Mohamed B. Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorganic Chemistry and Applications. 2010;2010(11):603978. doi: 10.1155/2010/603978

Copyright

© 2021 Panda & Dash. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.