• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 23, Pages: 1914-1928

Original Article

Energy — Efficient Operation in Subway Systems: Tracking Optimal Speed Profile with on Board Supercapacitor Energy Storage System

Received Date:18 April 2021, Accepted Date:27 May 2021, Published Date:02 July 2021

Abstract

Objectives: To verify the energy efficiency operation of electrified trains on the certain metro line, in Vietnam by combining two solutions to recover regenerative braking energy with on-board supercapacitors and tracking the optimal speed profile. Methods: This study proposes an integrated optimization method: applying Pontryagin's maximum principle (PMP) finds the optimal speed profile with fixed running time and recuperating regenerative braking energy by designing the control method — Current Mode Control (CMC) to manage charge/discharge process of the on-board supercapacitor energy storage system (SCESS) tracking the optimal speed profile. Findings: With this approach, a considerable reduction in consuming energy obtained for Cat Linh-Ha Dong metro line, Vietnam has been verified by simulation results on MATLAB and MAPLE software indicating that applying PMP, the highest operation energy saving is 10.15%, but if both solutions PMP and SCESS are applied, the energy saving level increases up to 14.7% in comparison with simulation results of the case of original speed profile. Novelty: Combining two energy saving solutions simultaneously: applying PMP to determine the optimal speed profile and using super-capacitors with CMC algorithm have recuperated the regenerative braking energy. The level of energy saving is higher than other saving solutions.

Keywords

Pontryagin's Maximum Principle, Supercapacitor Energy Storage System, Current Mode Control, Energy­Efficiency Operation, Timetable Optimization

References

  1. Yang X, Li X, Ning B, Tang T. A survey on energy-efficient train operation for urban rail transitIEEE Transactions on Intelligent Transportation Systems2015;17(1):213. Available from: https://doi.org/10.1109/TITS.2015.2447507
  2. González-Gil A, Palacin R, Batty P, Powell JP. A systems approach to reduce urban rail energy consumptionEnergy Conversion and Management2014;80:509524. Available from: https://dx.doi.org/10.1016/j.enconman.2014.01.060
  3. Barrero R, Mierlo JV, Tackoen X. Energy savings in public transportIEEE Vehicular Technology Magazine2008;3:2636. Available from: https://dx.doi.org/10.1109/mvt.2008.927485
  4. Allegre AL, Bouscayrol A, Delarue P, Barrade P, Chattot E, El-Fassi S. Energy Storage System With Supercapacitor for an Innovative SubwayIEEE Transactions on Industrial Electronics2010;57(12):40014012. Available from: https://dx.doi.org/10.1109/tie.2010.2044124
  5. Iannuzzi D, Tricoli P. Speed-Based State-of-Charge Tracking Control for Metro Trains With Onboard SupercapacitorsIEEE Transactions on Power Electronics2012;27(4):21292140. Available from: https://dx.doi.org/10.1109/tpel.2011.2167633
  6. Ciccarelli F, Iannuzzi D, Tricoli P. Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demandTransportation Research Part C: Emerging Technologies2012;24:3649. Available from: https://dx.doi.org/10.1016/j.trc.2012.02.001
  7. Domínguez M, Fernández A, Cucala AP, Lukaszewicz P. Optimal design of metro automatic train operation speed profiles for reducing energy consumptionProceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit2011;225:463474. Available from: https://dx.doi.org/10.1177/09544097jrrt420
  8. Barrero R, Tackoen X, Mierlo JV. Analysis and configuration of supercapacitor based energy storage system on-board light rail vehicles13th International Power Electronics and Motion Control Conference2008;p. 15121517. Available from: https://doi.org/10.1109/EPEPEMC.2008.4635481
  9. Battistelli L, Ciccarelli F, Lauria D, Proto D. Optimal design of DC electrified railway stationary storage systemInternational Conference on Clean Electrical Power2009;p. 739745. Available from: https://doi.org/10.1109/ICCEP.2009.5211971
  10. Iannuzzi D, Ciccarelli F, Lauria D. Stationary ultracapacitors storage device for improving energy saving and voltage profile of light transportation networksTransportation Research Part C: Emerging Technologies2012;21:321337. Available from: https://dx.doi.org/10.1016/j.trc.2011.11.002
  11. Teymourfar R, Asaei B, Iman-Eini H, fard RN. Stationary super-capacitor energy storage system to save regenerative braking energy in a metro lineEnergy Conversion and Management2012;56:206214. Available from: https://dx.doi.org/10.1016/j.enconman.2011.11.019
  12. Teymourfar R, Farivar G, Iman-Eini H, Asaei B. Optimal stationary super-capacitor energy storage system in a metro line2011 2nd International Conference on Electric Power and Energy Conversion Systems (EPECS)2011;p. 15. Available from: https://doi.org/10.1109/EPECS.2011.6126828
  13. Khodaparastan M, Mohamed A. A study on super capacitor wayside connection for energy recuperation in electric rail systemsIEEE Power & Energy Society General Meeting2017;p. 15. Available from: https://doi.org/10.1109/PESGM.2017.8273915
  14. Somasundaram D, S B. A closed loop control of quadratic boost converter using pid controllerInternational Journal of Engineering2014;27(11):165362. Available from: 10.5829/idosi.ije.2014.27.11b.02
  15. Ibaiondo H, Romo A. Kinetic energy recovery on railway systems with feedback to the gridProceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC2010;p. 994. Available from: https://doi.org/10.1109/EPEPEMC.2010.5606545
  16. Peña-Alcaraz M, Fernández A, Cucala AP, Ramos A, Pecharromán RR. Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energyProceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit2012;226:397408. Available from: https://dx.doi.org/10.1177/0954409711429411
  17. Jamadar NM, Jadhav HT. A review on braking control and optimization techniques for electric vehicleProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering2021. Available from: https://dx.doi.org/10.1177/0954407021996906
  18. Foumani MS, Delkhosh M. Modification of Equivalent Consumption Minimization Strategy for a Hybrid Electric VehicleInternational Journal of Engineering2016;29(12):17571764. Available from: 10.5829/idosi.ije.2016.29.12c.15
  19. Khoi TV, Khuong ND. Optimal planning of substations on urban railway power supply systems using integer linear programmingTransport and Communications Science Journal2019;70(4):264278. Available from: http://dx.doi.org/10.25073/tcsj.70.4.4
  20. Howlett P. The optimal control of a trainAnnals of Operations Research2000;98:6587. Available from: https://doi.org/10.1023/A:1019235819716
  21. Howlett PG, Pudney PJ. Energy-efficient train controlSpringer Science & Business Media. 2012.
  22. Albrecht A, Howlett P, Pudney P, Vu X, Zhou P. The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching pointsTransportation Research Part B: Methodological2016;94:482508. Available from: https://dx.doi.org/10.1016/j.trb.2015.07.023
  23. Albrecht A, Howlett P, Pudney P, Vu X, Zhou P. The key principles of optimal train control—Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniquesTransportation Research Part B: Methodological2016;94:509538. Available from: https://dx.doi.org/10.1016/j.trb.2015.07.024
  24. Khmelnitsky E. On an optimal control problem of train operationIEEE Transactions on Automatic Control2000;45(7):12571266. Available from: https://dx.doi.org/10.1109/9.867018
  25. Liu R(, Golovitcher IM. Energy-efficient operation of rail vehiclesTransportation Research Part A: Policy and Practice2003;37:917932. Available from: https://dx.doi.org/10.1016/j.tra.2003.07.001
  26. Nguyễn BH, Vo-Duy T, Ta MC, Trovão JP. Optimal Energy Management of Hybrid Storage Systems Using an Alternative Approach of Pontryagin’s Minimum PrincipleIEEE Transactions on Transportation Electrification2021. Available from: https://doi.org/10.1109/TTE.2021.3063072
  27. Lu S, Hillmansen S, Ho TK, Roberts C. Single-Train Trajectory OptimizationIEEE Transactions on Intelligent Transportation Systems2013;14(2):743750. Available from: https://dx.doi.org/10.1109/tits.2012.2234118
  28. Domínguez M, Fernández A, Cucala AP, Cayuela LP. Computer-aided design of ATO speed commands according to energy consumption criteriaWIT Transactions on the Built Environment2008;103:183192. Available from: 10.2495/978-1-84564-498-7/06
  29. Wong KK, Ho TK. Dynamic coast control of train movement with genetic algorithmInternational Journal of Systems Science2004;35(13-14):835846. Available from: https://dx.doi.org/10.1080/00207720412331203633
  30. Açıkbaş S, Söylemez MT. Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithmsIET Electric Power Applications2008;2:172182. Available from: https://dx.doi.org/10.1049/iet-epa:20070381
  31. Tuan DD, Toan ND. Developing a program to calculate the unit resultant force of trains on Vietnam railwaysTransport and Communications Science Journal2020;71(8):907923. Available from: https://doi.org/10.47869/tcsj.71.8.3
  32. Tiem NV. Speed control for the train of urban railway using fuzzy-d controllerTransport and Communications Science Journal2020;71(6):640650. Available from: https://doi.org/10.25073/tcsj.71.6.1
  33. Sun X, Lu H, Dong H. Energy-efficient train control by multi-train dynamic cooperationIEEE Transactions on Intelligent Transportation Systems2017;18(11):31143135. Available from: https://doi.org/10.1109/TITS.2017.2682270
  34. Tuan AP, Phuong VH, Quang NP. Modeling and Control of Supercapacitor Energy Storage SystemsJournal of Science and Technology Technical Universities2014;103.
  35. Hai NT. Evaluation of effect Pontryagin's Maximum Principle for optimal control train by criteria of energy save2010 International Symposium on Computer, Communication, Control and Automation (3CA) 2010 May 51:363366. Available from: https://doi.org/10.1109/3CA.2010.5533807

Copyright

© 2021 Anh & Quyen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.