• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 11, Pages: 967-978

Original Article

Enhancing Diarrheal Disease Diagnosis and Detection with a Hybrid Deep Learning Model

Received Date:18 January 2024, Accepted Date:12 February 2024, Published Date:28 February 2024


Background: Diarrheal disease is a major source of mortality as well as morbidity in children under five in underdeveloped nations. Traditional diagnostic methods for diarrheal disease are time-consuming and often lack accuracy which leads to delays in treatment and the potential for misdiagnosis. Objectives: The objective of this review paper is to provide a comprehensive analysis of the existing body of research on the detection and diagnosis of diarrheal disease using artificial intelligence based techniques such as machine learning and deep learning. Method: A review has been conducted where the papers from the year 2015-2023 have been screened using PRISMA criteria. Findings: This review underlines how machine and deep learning can diagnose diarrheal disorders and work on their limitations that still persist. It synthesizes information from peer-reviewed papers and research studies to show how these techniques can improve diagnosis, which is essential for treating and preventing diarrheal diseases. While reviewing the existing techniques, it has been found that Random Forest achieved 97.48% accuracy, Logistic Regression and Support Vector Machine obtained 100% recall, while Naïve Bayes produced the maximum precision of 96.55% with a reduced error rate of 2.52%.The review paper also stresses the necessity of standardizing feature representation, model architecture, and assessment criteria to optimize diarrheal illness detection models. Novelty: While most of the researchers had used only machine learning techniques, this review emphasizes the importance of using deep learning techniques as well as hyper parameter optimizers for generating the optimal results. Apart from this, the novelty of study lies in its hybridization of advanced Convolutional Neural Networks (CNNs) and their diverse combinations to represent a significant advancement in the detection and diagnosis of diarrheal diseases.

Keywords: Healthcare, Diarrheal disease, Pathogens, Artificial intelligence, Machine Learning, Transfer Learning, Deep Learning


  1. Nemeth V, Pfleghaar N, Diarrhea. Diarrhea. 1920.
  2. Shah S, Kongre V, Kumar V, Bharadwaj R. A Study of Parasitic and Bacterial Pathogens Associated with Diarrhea in HIV-Positive Patients. Cureus. 2016;8(9). Available from: https://doi.org/10.7759/cureus.807
  3. Shane AL, Mody RK, Crump JA, Tarr PI, Steiner TS, Kotloff K, et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clinical Infectious Diseases. 2017;65(12):e45–e80. Available from: https://doi.org/10.1093/cid/cix669
  4. Robins-Browne RM, Levine MM. Laboratory Diagnostic Challenges in Case/Control Studies of Diarrhea in Developing Countries. Clinical Infectious Diseases. 2012;55(suppl_4):S312–S316. Available from: https://doi.org/10.1093/cid/cis756
  5. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of Ambient Intelligence and Humanized Computing. 2023;14(7):8459–8486. Available from: https://doi.org/10.1007/s12652-021-03612-z
  6. Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing Artificial Intelligence for Clinical Decision-Making. Frontiers in Digital Health. 2021;3. Available from: https://doi.org/10.3389/fdgth.2021.645232
  7. Mbunge E, Chemhaka G, Batani J, Gurajena C, Dzinamarira T, Musuka G, et al. Predicting Diarrhoea Among Children Under Five Years Using Machine Learning Techniques. In: Artificial Intelligence Trends in Systems. (pp. 94-109) Springer International Publishing. 2022.
  8. Abdullahi T, Nitschke G, Sweijd N. Predicting diarrhoea outbreaks with climate change. PLOS ONE. 2022;17(4):e0262008. Available from: https://doi.org/10.1371/journal.pone.0262008
  9. Zahirzda A, Chanmas G, Chan JH. A data mining model for predicting diarrhea in Afghan children. Institute of Electrical and Electronics Engineers (IEEE). 2021. Available from: https://doi.org/10.36227/techrxiv.13711747.v1
  10. Yonanda YP, Putra AP, Purwanti E. Automatic Detection of Escherichia coli Bacteria from Tryptic Soy Agar Image Using Deep Learning Method. Indonesian Applied Physics Letters. 4(2):45–56. Available from: https://doi.org/10.20473/iapl.v4i2.46793
  11. Momand Z, Pal D, Mongkolnam P, Chan JH. A Machine Learning Approach to Detect Dehydration in Afghan Children. 2023. Available from: https://doi.org/10.48550/arXiv.2305.13275
  12. Do TD, Nguyen TD, Ta VC, Anh DT, Thi THT, Phan DH, et al. Dynamic weighted ensemble for diarrhoea incidence predictions. Machine Learning. 2023;p. 1–24. Available from: https://doi.org/10.1007/s10994-023-06465-z
  13. Wang Y, Li J, Gu J, Zhou Z, Wang Z. Artificial neural networks for infectious diarrhea prediction using meteorological factors in Shanghai (China) Applied Soft Computing. 2015;35:280–290. Available from: https://doi.org/10.1016/j.asoc.2015.05.047
  14. Tabata K, Mihara H, Nanjo S, Motoo I, Ando T, Teramoto A, et al. Artificial intelligence model for analyzing colonic endoscopy images to detect changes associated with irritable bowel syndrome. PLOS Digital Health. 2023;2(2):e0000058. Available from: https://doi.org/10.1371/journal.pdig.0000058
  15. Chusyairi A, Saputra PRN. Fuzzy C-Means Clustering Algorithm For Grouping Health Care Centers On Diarrhea Disease. International Journal of Artificial Intelligence Research. 2021;5(1):35–43. Available from: https://doi.org/10.29099/ijair.v5i1.191
  16. Wahyudi M, Andriani A. Application of C4.5 and Naïve Bayes Algorithm for Detection of Potential Increased Case Fatality Rate Diarrhea. Journal of Physics: Conference Series. 2021;1830(1):012016. Available from: https://doi.org/10.1088/1742-6596/1830/1/012016
  17. Fang X, Liu W, Ai J, He MJ, Wu Y, Shi Y, et al. Forecasting incidence of infectious diarrhea using random forest in Jiangsu Province, China. BMC Infectious Diseases. 2020;20(1). Available from: https://doi.org/10.1186/s12879-020-4930-2
  18. Ogwel B, Mzazi V, Nyawanda BO, Otieno G, Omore R. Predictive modeling for infectious diarrheal disease in pediatric populations: A systematic review. Learning Health Systems. 2024;8(1). Available from: https://doi.org/10.1002/lrh2.10382
  19. Leo J, Luhanga E, Michael K. Machine Learning Model for Imbalanced Cholera Dataset in Tanzania. The Scientific World Journal. 2019;2019:1–12. Available from: https://doi.org/10.1155/2019/9397578
  20. Campbell AM, Racault MFF, Goult S, Laurenson A. Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables. International Journal of Environmental Research and Public Health. 2020;17(24):9378. Available from: https://doi.org/10.3390/ijerph17249378
  21. Kumar Y, Kaur I, Mishra S. Foodborne Disease Symptoms, Diagnostics, and Predictions Using Artificial Intelligence-Based Learning Approaches: A Systematic Review. Archives of Computational Methods in Engineering. 2023;p. 1–26. Available from: https://doi.org/10.1007/s11831-023-09991-0
  22. Karanth S, Patel J, Shirmohammadi A, Pradhan AK. Machine learning to predict foodborne salmonellosis outbreaks based on genome characteristics and meteorological trends. Current Research in Food Science. 2023;6:100525. Available from: https://doi.org/10.1016/j.crfs.2023.100525
  23. Ali N, Kirchhoff J, Onoja PI, Tannert A, Neugebauer U, Popp J, et al. Predictive Modeling of Antibiotic Susceptibility in <i>E. Coli</i> Strains Using the U-Net Network and One-Class Classification. IEEE Access. 2020;8:167711–167720. Available from: https://doi.org/10.1109/ACCESS.2020.3022829
  24. Ayalew AM, Salau AO, Tamyalew Y, Abeje BT, Woreta N. X-Ray image-based COVID-19 detection using deep learning. 2023. Available from: https://doi.org/10.1007/s11042-023-15389-8
  25. Thakur K, Kaur M, Kumar Y. A Comprehensive Analysis of Deep Learning-Based Approaches for Prediction and Prognosis of Infectious Diseases. Archives of Computational Methods in Engineering. 2023;30(7):4477–4497. Available from: https://doi.org/10.1007/s11831-023-09952-7
  26. Kaur S, Kumar Y, Koul A, Kamboj SK. A Systematic Review on Metaheuristic Optimization Techniques for Feature Selections in Disease Diagnosis: Open Issues and Challenges. Archives of Computational Methods in Engineering. 2023;30(3):1863–1895. Available from: https://doi.org/10.1007/s11831-022-09853-1
  27. Kumar Y, Koul A, Sisodia PS, Shafi J, Verma K, Gheisari M, et al. Heart Failure Detection Using Quantum-Enhanced Machine Learning and Traditional Machine Learning Techniques for Internet of Artificially Intelligent Medical Things. Wireless Communications and Mobile Computing. 2021;2021:1–16. Available from: https://doi.org/10.1155/2021/1616725
  28. Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, et al. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare. 2009;10(12):2493. Available from: https://doi.org/10.3390/healthcare10122493
  29. Modi K, Singh I, Kumar Y. A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Lifestyle Diseases. Archives of Computational Methods in Engineering. 2023;30(8):4733–4756.
  30. Chang H, Choi JYY, Shim J, Kim M, Choi MY. Benefits of Information Technology in Healthcare: Artificial Intelligence, Internet of Things, and Personal Health Records. Healthcare Informatics Research. 2023;29(4):323–333. Available from: https://doi.org/10.4258/hir.2023.29.4.323
  31. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education. 2023;23(1):689. Available from: https://doi.org/10.1186/s12909-023-04698-z
  32. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare Journal. 2021;8(2):e188–e194. Available from: https://doi.org/10.7861/fhj.2021-0095
  33. Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R, et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Frontiers in Surgery. 2022;9. Available from: https://doi.org/10.3389/fsurg.2022.862322
  34. Kumar Y, Singla R. Effectiveness of Machine and Deep Learning in IOT-Enabled Devices for Healthcare System. In: Internet of Things. (pp. 1-19) Springer International Publishing. 2022.a


© 2024 Vala et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.