• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 17, Pages: 1755-1766

Original Article

Enhancing Plant Disease Detection using Advanced Deep Learning Models

Received Date:24 February 2024, Accepted Date:01 April 2024, Published Date:19 April 2024


Objective: The aim of this paper is to analyze the efficacy of employing multiple advanced convolutional neural networks (CNNs) for the purpose of enhancing the accuracy in detecting and classifying various plant diseases. Methods: The research involves the analysis of 7623 training images as well as 1906 validation images of different plant diseases and employed advanced deep learning models like DenseNet169, Xception, InceptionV3, MobileNetV2, and ResNet50V2 to classify them. At first the RGB images are converted to Grayscale and later to enhance their quality, few techniques have been used such as Otsu thresholding, noise removal, distance transform, and watershed techniques. Subsequently, contour features are extracted by calculating morphological values to obtain the necessary region that correspond to diseased areas in plant images. Findings: On evaluating the performance of the applied models on the basis of various metrics, MobileNetV2 and ResNetV2 achieved the highest validation accuracy scores of 99.42% each, with their respective loss values of 0.19 and 0.49. In terms of recall, precision, and F1 score, all models, except MobileNetV2 and InceptionV3, attained optimal scores of 0.99 each. Novelty: The novelty of this paper resides in the incorporation of multiple image segmentation techniques with fine tuning the parameters of advanced Convolutional Neural Network (CNN) models on the basis of various factors such as the number of images, size, channel, classes etc to generate the optimal results.

Keywords: Agriculture, Plant diseases, Artificial Intelligence, Advanced CNN models, Watershed Technique


  1. Kanna GP, Kumar SJKJ, Kumar YJ, Changela A, Woźniak M, Shafi J, et al. Advanced deep learning techniques for early disease prediction in cauliflower plants. Scientific Reports. 2023;13(1):1–21. Available from: https://doi.org/10.1038/s41598-023-45403-w
  2. Panchal AV, Patel SC, Bagyalakshmi K, Kumar P, Khan IR, Soni M. Image-based Plant Diseases Detection using Deep Learning. Materials Today: Proceedings. 2023;80(Part 3):3500–3506. Available from: https://dx.doi.org/10.1016/j.matpr.2021.07.281
  3. Kumar Y, Singh R, Moudgil MR, Kamini. A Systematic Review of Different Categories of Plant Disease Detection Using Deep Learning-Based Approaches. Archives of Computational Methods in Engineering. 2023;30(8):4757–4779. Available from: https://dx.doi.org/10.1007/s11831-023-09958-1
  4. Naralasetti V, Bodapati JD. Enhancing Plant Leaf Disease Prediction Through Advanced Deep Feature Representations: A Transfer Learning Approach. Journal of The Institution of Engineers (India): Series B. 2024;10:1–4. Available from: https://dx.doi.org/10.1007/s40031-023-00966-0
  5. Shoaib M, Shah B, Ei-Sappagh S, Ali A, Ullah A, Alenezi FA, et al. An advanced deep learning models-based plant disease detection: A review of recent research. Frontiers in Plant Science. 2023;14:1–22. Available from: https://doi.org/10.3389/fpls.2023.1158933
  6. Khalid MM, Karan O. Deep Learning for Plant Disease Detection. International Journal of Mathematics, Statistics, and Computer Science. 2023;2:75–84. Available from: https://dx.doi.org/10.59543/ijmscs.v2i.8343
  7. Nawaz M, Nazir T, Javed A, Amin ST, Jeribi F, Tahir A. CoffeeNet: A deep learning approach for coffee plant leaves diseases recognition. Expert Systems with Applications. 2024;237(Part A):121481. Available from: https://dx.doi.org/10.1016/j.eswa.2023.121481
  8. Khanna M, Singh LK, Thawkar S, Goyal M. PlaNet: a robust deep convolutional neural network model for plant leaves disease recognition. Multimedia Tools and Applications. 2024;83(2):4465–4517. Available from: https://dx.doi.org/10.1007/s11042-023-15809-9
  9. Haridasan A, Thomas J, Raj ED. Deep learning system for paddy plant disease detection and classification. Environmental Monitoring and Assessment. 2023;195. Available from: https://dx.doi.org/10.1007/s10661-022-10656-x
  10. Javidan SM, Banakar A, Vakilian KA, Ampatzidis Y. Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology. 2023;3:1–14. Available from: https://dx.doi.org/10.1016/j.atech.2022.100081
  11. Guo Y, Zhang J, Yin C, Hu X, Zou Y, Xue Z, et al. Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming. Discrete Dynamics in Nature and Society. 2020;2020:1–11. Available from: https://dx.doi.org/10.1155/2020/2479172
  12. Chen J, Chen J, Zhang D, Sun Y, Nanehkaran YA. Using deep transfer learning for image-based plant disease identification. Computers and Electronics in Agriculture. 2020;173:105393. Available from: https://dx.doi.org/10.1016/j.compag.2020.105393
  13. Chohan M, Khan A, Chohan R, Katpar SH, Mahar MS, , et al. Plant Disease Detection using Deep Learning. International Journal of Recent Technology and Engineering (IJRTE). 2020;9(1):909–914. Available from: https://dx.doi.org/10.35940/ijrte.a2139.059120
  14. Ahmed I, Yadav PK. Plant disease detection using machine learning approaches. Expert Systems. 2023;40(5). Available from: https://dx.doi.org/10.1111/exsy.13136
  15. Panigrahi KP, Das H, Sahoo AK, Moharana SC. Maize Leaf Disease Detection and Classification Using Machine Learning Algorithms. In: Progress in Computing, Analytics and Networking, Advances in Intelligent Systems and Computing. (Vol. 1119, pp. 659-669) Singapore. Springer. 2020.
  16. Atila Ü, Uçar M, Akyol K, Uçar E. Plant leaf disease classification using EfficientNet deep learning model. Ecological Informatics. 2021;61:101182. Available from: https://dx.doi.org/10.1016/j.ecoinf.2020.101182
  17. Bansal K, Batla RK, Kumar Y, Shafi J. Artificial Intelligence Techniques in Health Informatics for Oral Cancer Detection. In: Connected e-Health, Studies in Computational Intelligence. (Vol. 1021, pp. 255-279) Springer, Cham. 2022.
  18. Koul A, Bawa RK, Kumar Y. An Analysis of Deep Transfer Learning-Based Approaches for Prediction and Prognosis of Multiple Respiratory Diseases Using Pulmonary Images. Archives of Computational Methods in Engineering. 2024;31(2):1023–1049. Available from: https://dx.doi.org/10.1007/s11831-023-10006-1
  19. Hammou DR, Boubaker M. Tomato Plant Disease Detection and Classification Using Convolutional Neural Network Architectures Technologies. In: Networking, Intelligent Systems and Security, Smart Innovation, Systems and Technologies. (Vol. 237, pp. 33-44) Singapore. Springer . 2022.
  20. Silva MD, Brown D. Plant disease detection using multispectral imaging. In: International Advanced Computing Conference: IACC 2022, Communications in Computer and Information Science . (Vol. 1781, pp. 290-308) Springer, Cham. 2022.
  21. Koul A, Bawa RK, Kumar Y. Enhancing the detection of airway disease by applying deep learning and explainable artificial intelligence. Multimedia Tools and Applications. 2024;p. 1–33. Available from: https://dx.doi.org/10.1007/s11042-024-18381-y


© 2024 Kaur & Bansal. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.