• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 18, Pages: 1452-1467

Original Article

Prediction of Anisotropic Elastoplastic Instability with Rice’s Criterion in Plane Compression

Received Date:21 January 2021, Accepted Date:17 April 2021, Published Date:19 May 2021

Abstract

Objectives: The main objective of this work is the development of a mechanically coherent framework for the implementation of numerical simulation tools for sheet metal forming processes. The work at hand is part of a study of the mechanical behaviour of metallic materials subjected to large elastoplastic deformations during channel-die testing and a study of the mechanisms that limit their formability and cause their instability. We analyse the effect of induced rotation on the appearance of plastic instability predicted by Rice’s criterion. Methods: At the beginning, an adequate modelling of the mechanical behaviour of metals in large elasto-plastic deformations using the formalism in rotational referential is made. Then, a prediction of plastic instabilities is developed using Rice’s bifurcation criterion. Indeed, the integration of the law of anisotropic elastoplastic behaviour is presented in a three-dimensional kinematics framework in order to write the deformation tensor as a superior triangular matrix, with Hill’s anisotropic yielding function, using Runge Kutta’s method to integrate the obtained equations. Findings: we were able to show that Rice’s criterion can be used for any kind of material and that this criterion is effective in predicting what happens in metals. It predicts shear-band bifurcation in a continuous plastic medium. Hill’s criterion is suitable for what is weakly anisotropic. The model described above represents a good mathematical framework for analysing the behaviour of materials and plastic instability. Novelty: This study allows to apply Rice’s criterion in the case of a channel-die compression test, so as to locate plastic instability and see the appearance of shear bands for all types of materials; it demonstrates that the initial rotation of the material influences the appearance of shear-bands during a test simulating rolling.

Keywords: Elastoplastic; Large deformations; Anisotropy; Plastic instability; Localisation

 

References

  1. Abed-Meraim F, Balan T, Altmeyer G. Investigation and comparative analysis of plastic instability criteria: application to forming limit diagrams. The International Journal of Advanced Manufacturing Technology. 2014;71(5-8):1247–1262. Available from: https://dx.doi.org/10.1007/s00170-013-5530-8
  2. Rice JR. The localization of plastic deformation. In: WTK., ed. Theoretical and applied mechanics. (p. 207) Amsterdam. North Holland. 1976.
  3. Gomez-Rivas E, Griera A. Shear fractures in anisotropic ductile materials: An experimental approach. Journal of Structural Geology. 2012;34:61–76. Available from: https://dx.doi.org/10.1016/j.jsg.2011.10.007
  4. Benzerga AA, Thomas N, Herrington JS. Plastic flow anisotropy drives shear fracture. Scientific Reports. 1425;9. Available from: https://doi.org/10.1038/s41598-018-38437-y
  5. Jaumann G. Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzber, Akad. Wiss. Wien (IIa). 1976;120:385–530. Available from: https://ci.nii.ac.jp/naid/10019645790/
  6. Green AE, McInnis BC. XVII.—Generalized Hypo-Elasticity. Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences. 1967;67(3):220–230. Available from: https://dx.doi.org/10.1017/s0080454100008074
  7. Thomas TY. Plastic flow and fracture in solids. New York. Academic Press. 1961.
  8. Mandel J. Condition de stabilité de Drucker. Proceedings of IUTAM Symposium. 1964.
  9. Hill R, Hutchinson JW. Bifurcation phenomena in the plane tension test. Journal of the Mechanics and Physics of Solids. 1975;23(4-5):239–264. Available from: https://dx.doi.org/10.1016/0022-5096(75)90027-7
  10. Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids. 1975;23(6):371–394. Available from: https://dx.doi.org/10.1016/0022-5096(75)90001-0
  11. Stören S, Rice JR. Localized necking in thin sheets. Journal of the Mechanics and Physics of Solids. 1975;23(6):421–441. Available from: https://dx.doi.org/10.1016/0022-5096(75)90004-6
  12. Marciniak Z, Kuczynski K. Limit strains in the process of stretch forming sheet metal. Int. J. Mechanical Sciences. 1967;9:609–620. Available from: https://doi.org/10.1016/0020-7403(67)90066-5
  13. Marciniak Z, Kuczyński K, Pokora T. Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. International Journal of Mechanical Sciences. 1973;15(10):789–800. Available from: https://dx.doi.org/10.1016/0020-7403(73)90068-4
  14. Sidoroff F, Dogui A. Some issues about anisotropic elastic–plastic models at finite strain. International Journal of Solids and Structures. 2001;38(52):9569–9578. Available from: https://dx.doi.org/10.1016/s0020-7683(01)00139-1
  15. Fathallah K, Chenaoui A, Darrieulat M, Dogui A. Material rotating frame, rate-independent plasticity with regularization of Schmid law and study of channel-die compression. Mathematics and Mechanics of Solids. 2019;24(1):18–39. Available from: https://dx.doi.org/10.1177/1081286517729429
  16. Peeters B, Hoferlin E, Houtte PV, Aernoudt E. Assessment of crystal plasticity based calculation of the lattice spin of polycrystalline metals for FE implementation. International Journal of Plasticity. 2001;17(6):819–836. Available from: https://dx.doi.org/10.1016/s0749-6419(00)00070-x
  17. Pineau A, Benzerga AA, Pardoen T. Failure of metals I: Brittle and ductile fracture. Acta Materialia. 2016;107:424–483. Available from: https://dx.doi.org/10.1016/j.actamat.2015.12.034
  18. Darrieulat M, Poussardin JY, Fillit RY, Desrayaud C. Homogeneity and heterogeneity in channel-die compressed Al–1%Mn single crystals: Considerations on the activity of the slip systems. Materials Science and Engineering: A. 2007;445-446:641–651. Available from: https://dx.doi.org/10.1016/j.msea.2006.09.094

Copyright

© 2021 Zhani et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.