• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 33, Pages: 1624-1633

Original Article

Evaluation of Alkaline-Treated Polycaprolactone and Zr-Hydroxyapatite as a Drug Delivery System in Dentistry

Received Date:14 December 2021, Accepted Date:03 August 2022, Published Date:27 August 2022


Objectives: To develop alkaline-treated polycaprolactone (PCL) and Zrhydroxyapatite (Zr-HA) and fabricate their mixtures as drug delivery systems for dental application. Methods: PCL was subjected to hydrolysis by using concentrated NaOH. Zr-HA was synthesized by co-precipitation reaction that contained Ca(NO3)2, (NH4)2HPO4 and ZrO2 at 65OC. The obtained materials were characterized by using techniques such as X-Ray Fluorescence, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, or rheometric analysis. Various compositions of the Zr-HA and the modified-PCL were used for preparing drug delivery systems, and properties including cytotoxicity, degradation, and toluidine blue (TB) binding/releasing were investigated. Findings: The synthesized Zr-HA was more non-stoichiometric than HAcontrol. Improved hydrophilicity was evident for the modified-PCL. Drug carriers composing of the Zr-HA and the modified-PCL were increasingly degradable in phosphate buffer saline solution compared to those containing HA/PCL-control, resulting in 9% and 6% weight loss after 8 weeks of the immersion, respectively. Binding of TB on the Zr-HA/the modified-PCL mixture increased while the release of such bound dye decreased in comparison with that of HA/PCL counterpart. All of the developed materials were non-cytotoxic based on MTT assay using L929 cell line. Novelty: Partial inclusion of Zr4+ ions in Ca2+ lattices of HA resulted in fairly degradable Zr-HA. Shortening the epsiloncaprolactone units of PCL by strong bases was simple in producing fragmented PCL polymer that exhibited improvement of hydrophilic interaction towards another. Varying the weight ratios of the Zr-HA and the modified-PCL when to prepare drug carriers is possible to acquire optimal binding/releasing profiles of drugs in dental cavities.

Keywords: Dental ceramic; hydroxyapatite; polycaprolactone; surface hydrophilicity; drug delivery system


  1. Wang B, Mastrogiacomo S, Yang F, Shao J, Ong MMA, Chanchareonsook N, et al. Application of BMP-Bone Cement and FGF-Gel on Periodontal Tissue Regeneration in Nonhuman Primates. Tissue Engineering Part C: Methods. 2019;25(12):748–756. Available from: https://doi.org/10.1089/ten.TEC.2019.0160
  2. Parhizkar A, Asgary S. Local Drug Delivery Systems for Vital Pulp Therapy: A New Hope. International Journal of Biomaterials. 2021;2021:1–9. Available from: https://doi.org/10.1155/2021/5584268
  3. Shi P, Liu M, Fan F, Yu C, Lu W, Du M. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Materials Science and Engineering C. 2018;90:706–712. Available from: https://doi.org/10.1016/j.msec.2018.04.026
  4. Wu VM, Ahmed MK, Mostafa MS, Uskoković V. Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts. Materials Science and Engineering C. 2020;117:111257. Available from: https://doi.org/10.1016/j.msec.2020.111257
  5. Singh A, Dubey AK. Various Biomaterials and Techniques for Improving Antibacterial Response. ACS Applied Bio Materials. 2018;1(1):3–20. Available from: https://doi.org/10.1021/acsabm.8b00033
  6. Moradi KH, Alvani AAS. First-principles study on Sr-doped hydroxyapatite as a biocompatible filler for photo-cured dental composites. Journal of the Australian Ceramic Society. 2020;56(2):591–598. Available from: https://doi.org/10.1007/s41779-019-00369-9
  7. d'avanzo, Bruno MC, Giudice A, Mancuso A, Gaetano F, Cristiano MC, et al. Influence of materials properties on bio-physical features and effectiveness of 3D-scaffolds for periodontal regeneration. Molecules. 2021;26(6). Available from: https://doi.org/10.3390/molecules26061643
  8. Halim A, Hussein NA, Kandar MZ, MK. Nanomaterials-Upconverted Hydroxyapatite for Bone Tissue Engineering and a Platform for Drug Delivery. International Journal of Nanomedicine. 2021;16:6477–6496. Available from: https://doi.org/10.2147/IJN.S298936
  9. Simone S, Massimiliano D, Lorenzo P, Elisa M, Rosa MI, Fernanda M, et al. Enhancement of the biological and mechanical performances of sintered hydroxyapatite by multiple ions doping. Frontier Materials. 2020;7:224. Available from: https://doi.org/10.3389/fmats.2020.00224
  10. Park J, Kim BJJ, Hwang JYY, Yoon YWW, Cho HSS, Kim DHJ, et al. In-Vitro Mechanical Performance Study of Biodegradable Polylactic Acid/Hydroxyapatite Nanocomposites for Fixation Medical Devices. Journal of Nanoscience and Nanotechnology. 2018;18(2):837–841. Available from: https://doi.org/10.1166/jnn.2018.14884
  11. Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W. 3D printing of HA / PCL composite tissue engineering scaffolds. Advanced Industrial and Engineering Polymer Research. 2019;2(4):196–202. Available from: https://doi.org/10.1016/j.aiepr.2019.09.003
  12. Colmenares G, Agudelo-Gomez ML, Pinal R, Hoyos-Palacio L. Production of bioabsorbible nanoparticles of polycaprolactone by using a tubular recirculating system. Dyna (Medellin, Colombia). 0204;p. 85. Available from: https://doi.org/10.15446/dyna.v85n204.62292
  13. Thanyaphoo S, Kaewsrichan J. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2. Acta Pharm. 2016;66(3):373–85. Available from: https://doi.org/10.1515/acph-2016-0026
  14. Manee S, Kaewsrichan J. Cosmeceutical Benefit of Abelmoschus esculentus L. Seed Extract. Journal of Pharmaceutical Research International. 2017;19(6):1–11. Available from: https://doi.org/10.9734/JPRI/2017/37587
  15. Sabri MM. Chemical and Structural Analysis of Rocks Using X-ray Fluorescence and X-ray Diffraction Techniques. ARO-The Scientific Journal of Koya University. 2020;8(1):79–87. Available from: https://doi.org/10.14500/aro.10643
  16. Iviglia G, Kargozar S, Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. Journal of Functional Biomaterials. 2019;10(1):3. Available from: https://doi.org/10.3390/jfb10010003
  17. Gomez-Vazquez OM, Correa-Piña BA, Zubieta-Otero LF, Castillo-Paz AM, Londoño-Restrepo SM, Rodriguez-García ME. Synthesis and characterization of bioinspired nano-hydroxyapatite by wet chemical precipitation. Ceramics International. 2021;47(23):32775–32785. Available from: https://doi.org/10.1016/j.ceramint.2021.08.174
  18. Rubí-Sans G, Recha-Sancho L, Pérez-Amodio S, Mateos-Timoneda MÁ, Semino CE, Engel E. Development of a Three-Dimensional Bioengineered Platform for Articular Cartilage Regeneration. Biomolecules. 2019;10(1):52. Available from: https://doi.org/10.3390/biom10010052
  19. Ren J, Kohli N, Sharma V, Shakouri T, Keskin-Erdogan Z, Saifzadeh S, et al. Poly-ε-Caprolactone/Fibrin-Alginate Scaffold: A New Pro-Angiogenic Composite Biomaterial for the Treatment of Bone Defects. Polymers. 2021;13(19):3399. Available from: https://doi.org/10.3390/polym13193399
  20. Ahmed MK, Al-Wafi R, Mansour SF, El-Dek SI, Uskoković V. Physical and biological changes associated with the doping of carbonated hydroxyapatite/polycaprolactone core-shell nanofibers dually, with rubidium and selenite. Journal of Materials Research and Technology. 2020;9(3):3710–3723. Available from: https://doi.org/10.1016/j.jmrt.2020.01.108
  21. Bapat RA, Yang HJ, Chaubal TV, Dharmadhikari S, Abdulla AM, Arora S, et al. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. RSC Advances. 2022;12(20):12773–12793. Available from: https://doi.org/10.1039/d2ra00006g
  22. Raju G, Haris MRHM, Azura AR, Eid AMAM. Chitosan Epoxidized Natural Rubber Biocomposites for Sorption and Biodegradability Studies. ACS Omega. 2020;5(44):28760–28766. Available from: https://doi.org/10.1021/acsomega.0c04081
  23. Rohiwal SS, Ellederová Z, Ardan T, Klima J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines. 2021;9(8):1005. Available from: https://doi.org/10.3390/biomedicines9081005


© 2022 Thepsri & Kaewsrichan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.