• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 1, Pages: 66-76

Original Article

Evaluation of the Biochemical and Functional Characteristic of Stinging catfish, Heteropneustes fossilis Muscle Tissue with Emphasize on Myofibrillar Protein and Collagen

Received Date:09 August 2022, Accepted Date:28 November 2022, Published Date:06 January 2023


Objectives: To evaluate the physico-chemical and functional characteristics of the stinging catfish muscle tissue during the storage time of 18 hours following the death of the fish. Methods: In the present study, stinging catfish were collected from the paddy fields and streams near Tiruvalla Kerala. Fish were slaughtered immediately and analyzed for changes in pH value, cook loss, expressible water content, water holding capacity, sensory demerit score values, and textural profile and were compared with progress of rigor mortis. Study also evaluated the changes in protein fractions present in the muscle tissue and correlated them with autolytic enzyme activities. Findings: In stinging catfish, the rigor mortis occurred within four hours of storage (78.37 %) at ambient temperature. The post rigor stage was attained after the 6th hour and the K value reached above 60% within the 8th hour which indicates the unacceptable range for consumption. The present study also proved that the stinging catfish is an inosine producer. The initial concentration of sarcoplasmic protein in fish muscle (13.71%) decreased to 7.62% at the end of 18 hours of storage. The muscle tissue myofibrillar protein also showed a decrease from an initial concentration of 44.87% to a final concentration of 18.02%. Protein denaturation was evident with an increase from 39.65% to 73.20% at the end of the storage period. Collagen concentration was found to be reduced (31.85% reduction) after the 18th hour of storage. Pepsin soluble collagen was less susceptible to the activity of collagenase enzyme in the pre-rigor stage, confirming its role in post-rigor muscle softening when compared to acid soluble and insoluble collagen. Novelty: The present work authenticated that post-rigor softening of stinging catfish muscle is typically due to the degradation of pepsin soluble collagen and not reported elsewhere. Additionally, myofibrillar proteins have more influence on total hardness and stiffness than collagen, while cohesiveness is a better function of collagen than myofibrillar protein. These findings make it useful to perceive the process thatinduces softening in catfish and to create effective strategies to prevent it.

Keywords: Collagen; Myofibrillar Protein; Adenosine Nucleotides; Autolytic Enzymes; Textural Profile


  1. Ghaly AE, Budge DD, Brooks S, MS. Fish Spoilage Mechanisms and Preservation Techniques: Review. American Journal of Applied Sciences. 2010;7(7):859–877. Available from: https://doi.org/10.3844/ajassp.2010.859.877
  2. Prabhakar SPK, Vatsa, Sant S, Pathak. A Comprehensive Review on Freshness of Fish and Assessment: Analytical Methods and Recent Innovations. Food Research International. 2020;133:109157. Available from: https://doi.org/10.1016/j.foodres.2020.109157
  3. Suárez MD, Abad M, Ruiz-Cara T, Estrada JD, García-Gallego M. Changes in muscle collagen content during post mortem storage of farmed sea bream (Sparus aurata): influence on textural properties. Aquaculture International. 2005;13(4):315–325. Available from: https://doi.org/10.1007/s10499-004-3405-6
  4. Sato K, Ando M, Kubota S, Origasa K, Kawase H, Toyohara H, et al. Involvement of Type V Collagen in Softening of Fish Muscle during Short-Term Chilled Storage. Journal of Agricultural and Food Chemistry. 1997;45(2):343–348. Available from: https://doi.org/10.1021/jf9606619
  5. Ahmed Z, Donkor O, Street WA, Vasiljevic T. Calpains- and cathepsins-induced myofibrillar changes in post-mortem fish: Impact on structural softening and release of bioactive peptides. Trends in Food Science & Technology. 2015;45(1):130–146. Available from: https://doi.org/10.1016/j.tifs.2015.04.002
  6. Bito M, Yamada K, Mikumo Y, Amano K. Studies on rigor mortis of fish: Differences in the mode of rigor-mortis among some varieties of fish by modified cuttings method. Bulletin of Tokai Regional Fisheries Research Laboratory. 1983;109:89–96. Available from: https://agris.fao.org/agris-search/search.do?recordID=JP19840076545
  7. Saito T, Arai KI, Matsuyoshi M. A New Method for Estimating the Freshness of Fish. Nippon Suisan Gakkaish. 1959;24(9):749–750. Available from: https://doi.org/10.2331/suisan.24.749
  8. Warrier S, Ninjoor V, Sawant PL, Kumta US. Lysosomal enzymes in drip & muscle of Harpodon nehereus. Indian Journal of Biochemistry and Biophysics. 1972;9(2):207–209. Available from: https://www.osti.gov/biblio/4384276
  9. Moore S, Stein W. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. Journal of Biological Chemistry. 1954;211(18):71178. Available from: https://www.osti.gov/biblio/4384276
  10. Li J, Zhou G, Xue P, Dong X, Xia Y, Regenstein J, et al. Spoilage microbes’ effect on freshness and IMP degradation in sturgeon fillets during chilled storage. Food Bioscience. 2021;41:101008. Available from: https://doi.org/10.1016/j.fbio.2021.101008
  11. Guan F, Chen Y, Zhao S, Chen Z, Yu C, Yuan Y. Effect of slurry ice during storage on myofibrillar protein of Pseudosciaena crocea. Food Scicience & Nutrition. 2021. Available from: https://doi.org/10.1002/fsn3.2355
  12. Modzelewska-Kapituła M, Kwiatkowska A, Jankowska B, Dąbrowska E. Water holding capacity and collagen profile of bovine m. infraspinatus during postmortem ageing. Meat Science. 2015;100:209–216. Available from: https://doi.org/10.1016/j.meatsci.2014.10.023
  13. Moreno HM, Montero MP, Gómez-Guillén MC, Fernández-Martín F, Mørkøre T, Borderías J. Collagen characteristics of farmed Atlantic salmon with firm and soft fillet texture. Food Chemistry. 2012;134(2):678–685. Available from: https://doi.org/10.1016/j.foodchem.2012.02.160
  14. Liliana G, Fidalgo JA, Saraiva SP, Aubourg M, Vázquez JA, Torres. Enzymatic activity during frozen storage of atlantic horse mackerel (Trachurus trachurus) pre-treated by high-pressure processing. Food and Bioprocess Technology. 2015;8(3):493–502. Available from: https://doi.org/10.1007/s11947-014-1420-9
  15. Hernández-Herrero MM, Duflos G, Malle P, Bouquelet S. Collagenase activity and protein hydrolysis as related to spoilage of iced cod (Gadus morhua) Food Research International. 2003;36(2):141–147. Available from: https://doi.org/10.1016/S0963-9969(02)00129-1
  16. Shigemura Y, Ando M, Tsukamasa Y, Makinodan Y, Kawai T. Correlation of type V collagen content with post-mortem softening of fish meat during chilled storage. Fisheries Science. 2003;69(4):842–848. Available from: https://doi.org/10.1046/j.1444-2906.2003.00696.x
  17. Alderton AL, Means WJ, Kalchayanand N, Mccormick RJ, Miller KW. Bovine metalloprotease characterization and in vitro connective tissue degradation1. Journal of Animal Science. 2004;82(5):1475–1481. Available from: https://doi.org/10.2527/2004.8251475x.
  18. Ali AMM, Benjakul S, Kishimura H. Molecular characteristics of acid and pepsin soluble collagens from the scales of golden carp (Probarbus jullieni) Emirates Journal of Food and Agriculture. 2017;29(6):450. Available from: https://doi.org/10.9755/ejfa.2016-09-1316
  19. Nalinanon S, Benjakul S, Visessanguan W, Kishimura H. Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus) Food Chemistry. 2007;104(2):593–601. Available from: https://doi.org/10.1016/j.foodchem.2006.12.035


© 2023 Varghese & Mathew. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.