• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 10, Pages: 717-726

Original Article

Evolution of Periodic Orbits in the Sun-Jupiter and Sun-Earth Systems

Received Date:03 May 2022, Accepted Date:23 February 2023, Published Date:10 March 2023


Objective: The periodic orbits around smaller and larger primaries are studied in the Sun-Jupiter and Sun-Earth systems, considering smaller primary as an oblate spheroid. Methods: We used the Poincare surface section method to find the periodic orbits and discussed the differences between these orbits with and without oblateness. Findings: Different trajectories are drawn with the change of Jacobi constant and radiation pressure. Size variations, location, and eccentricity of an orbit around smaller primary are observed due to oblateness effect of the Jupiter and Earth. Oblateness of the smaller primary and radian pressure of the bigger primary have a significant effect on eccentricity, orbit shape, size, and position in phase space. Novelty : Small solar system bodies, such as asteroids and comets in the Sun-Jupiter and Sun-Earth systems, can be explored using periodic orbits. Perturbation caused by oblateness of the smaller primary must be understood and addressed during human exploration missions.

Keywords: Circular Restricted Three Body Problem; Poincare Surface Sections; Jacobi Constant; Radiation Factor; Oblateness; Trajectories; Resonance


  1. Koon WS, Lo MW, Marsden JE, Ross SD. Low Energy Transfer to the Moon. Celestial Mechanics and Dynamical Astronomy. 2001;81(1):63–73. Available from: https://doi.org/10.1023/A:1013359120468
  2. Szebehely V, Theory, Orbits. Theory of Orbits. San Diego. Academic Press. 1967.
  3. Darwin G. Periodic Orbits: Scientific Papers. (Vol. 4) Cambridge. Cambridge University Press. 1911.
  4. Moulton F. Periodic Orbits. Carnegie Institute of Washington Publications. 1920;p. 161. Available from: https://archive.org/download/periodicorbitsby00mouluoft/periodicorbitsby00mouluoft.epub
  5. Huang S. Astronomical Journal. 1962;67:304. Available from: https://adsabs.harvard.edu/pdf/1962AJ.....67..304H
  6. Broucke RA. Periodic Orbits in the Restricted Three-Body Problem with Earth-Moon Masses. Technical Report, Jet Propulsion Laboratory, Pasadena . 1968;32. Available from: https://ntrs.nasa.gov/api/citations/19680013800/downloads/19680013800.pdf
  7. Tsirogiannis GA, Douskos CN, Perdios EA. Computation of the Liapunov Orbits in the Photogravitational RTBP with Oblateness. Astrophysics and Space Science. 2006;305(4):389–398. Available from: https://doi.org/10.1007/s10509-006-9171-3
  8. Dutt P, Sharma RK. Analysis of Periodic and Quasi-Periodic Orbits in the Earth-Moon System. Journal of Guidance, Control, and Dynamics. 2010;33(3):1010–1017. Available from: http://dx.doi.org/10.2514/1.46400
  9. Dutt P, Sharma RK. Evolution of Periodic Orbits in the Sun-Mars System. Journal of Guidance, Control, and Dynamics. 2011;34(2):635–644. Available from: https://doi.org/10.2514/1.51101
  10. Winter OC, Murray CD. Resonance and chaos: I. First-order interior resonances. Astronomy and Astrophysics. 1997;319(1):290–304. Available from: https://adsabs.harvard.edu/full/1997A%26A...319..290W
  11. Safiya A, Sharma B, RK. Analysis of periodic orbits in the Saturn-Titan system using the method of Poincare section surfaces. Astrophysics and Space Science. 2011;333(1):37–48. Available from: https://doi.org/10.1007/s10509-011-0630-0
  12. Safiya A, Sharma B, RK. Oblateness effect of Saturn on periodic orbits in the Saturn-Titan restricted three-body problem. Astrophysics and Space Science. 2012;340:245–261. Available from: https://doi.org/ 10.1007/s10509-012-1052-3
  13. Niraj P, Thomas VO. Analysis of Effect of oblateness of smaller primary on the evolution of periodic Orbits. International Journal of Astronomy and Astrophysics. 2016;6:440–463. Available from: http://dx.doi.org/10.4236/ijaa.2016.64036
  14. Bhavika M, Niraj P, Elbaz I. Nonlinear regression multivariate model for first order resonant periodic orbits and error analysis. Planetary and Space Science. 2022;219:105516. Available from: https://doi.org/10.1016/j.pss.2022.105516


© 2023 Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.