• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 20, Pages: 2010-2020

Original Article

Evolution of real-time onboard processing and classification of remotely sensed data

Received Date:12 May 2020, Accepted Date:21 May 2020, Published Date:18 June 2020


Objectives: To provide a technical review of current hardware architecture, techniques, problems, and practices used for real-time on-board data processing and classification of Remotely Sensed (RS) data. Method: The major issues of data processing such as power limitation and downlink bandwidth are considered for analysis. Performance of traditional Central Processing Unit (CPU) and onboard Graphics Processing Unit (GPU), Field Programmable Gate Array (FPGA)based data processing are presented in Table 3. Different hardware architecture used for onboard data classification such as FPGA, Advanced RISC Microcontroller (ARM), and Digital Signal Processor (DSP) based system performance are reported in Tables 5 and 6 respectively. Findings: In general satellite data processing, immediate action cannot be taken against natural disasters because of the time taken in processing data at the ground station. Also the downlink bandwidth available between satellite and ground station many not be sufficient to transfer large size of data. One of the solutions to resolve this issue is to process the data onboard, so that data size will be reduced and can be downlink to the ground station for different applications such as urban planning, agriculture, defense/security purposes, biological threat detection, fire tracking on wild land, risk/hazard prevention and also helps to take immediate action during natural disasters. The existing hardware module and its architecture have been studied and concluded with a comparative result. These results aid the researchers to come up with a more optimized design and hardware architecture for data preprocessing and classification.

Keywords: Remote Sensing; pre-processing; classification; field programmable gate array; digital signal processor; graphics processing unit; central processing unit 


  1. Chen C, Li W, Gao L, Li H, Plaza J. Special issue on advances in real-time image processing for remote sensing. Journal of Real-Time Image Processing. 2018;15(3):435–438. doi: 10.1007/s11554-018-0831-7
  2. Qi B, Shi H, Zhuang Y, Chen H, Chen L. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery. Sensors. 2018;18(5):1328. doi: 10.3390/s18051328
  3. Chein-I Chang, Hsuan Ren, Shao-Shan Chiang. Real-time processing algorithms for target detection and classification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing. 2001;39(4):760–768. doi: 10.1109/36.917889
  4. González C, Sánchez S, Paz A, Resano J, Mozos D, Plaza A. Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing. Elsevier BV. 2013. doi: 10.1016/j.vlsi.2012.04.002
  5. Zhang B, Yang W, Gao L, Chen D. Real-time target detection in hyperspectral images based on spatial-spectral information extraction. EURASIP Journal on Advances in Signal Processing. 2012;2012(1). doi: 10.1186/1687-6180-2012-142
  6. Liu D, Zhou G, Huang J, Zhang R, Shu L, Zhou X, et al. On-Board Georeferencing Using FPGA-Based Optimized Second-Order Polynomial Equation. Remote Sensing. 2019;11(2):124. doi: 10.3390/rs11020124
  7. Du Q, Nekovei R. Fast real-time onboard processing of hyperspectral imagery for detection and classification. Journal of Real-Time Image Processing. 2009;4(3):273–286. doi: 10.1007/s11554-008-0106-9
  8. El-Araby E, El-Ghazawi T, Moigne JL, Irish R. Reconfigurable Processing for Satellite On-Board Automatic Cloud Cover Assessment (ACCA) Journal of Real-Time Image Processing. 2019;4(3):245–259. doi: 10.1007/s11554-008-0107-8
  9. Li C, Gao L, Plaza A, Zhang B. FPGA implementation of a maximum simplex volume algorithm for endmember extraction from remotely sensed hyperspectral images. Journal of Real-Time Image Processing. 2019;p. 1681–1694. doi: 10.1007/s11554-017-0679-2
  10. Santos L, Magli E, Vitulli R, Lopez JF, Sarmiento R. Highly-Parallel GPU Architecture for Lossy Hyperspectral Image Compression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2013;6(2):670–681. doi: 10.1109/jstars.2013.2247975
  11. Zhou G, Zhan R, Liu N, Huang J, Zhou X. On-board ortho-rectification for images based on an FPGA. Remote Sensing. 2017;9(9). doi: 10.3390/rs9090874
  12. Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing. 2007;28(5):823–870. doi: 10.1080/01431160600746456
  13. Toutin T. Review article: Geometric processing of remote sensing images: models, algorithms and methods. International Journal of Remote Sensing. 2010;p. 1893–1924.
  14. Figueiredo MA, Gloster CS, Stephens M, Graves CA, Nakkar M. Implementation of Multispectral Image Classification on a Remote Adaptive Computer. VLSI Design. 2000;10(3):307–319. doi: 10.1155/2000/31983
  15. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA. Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods. IEEE Signal Processing Magazine. 2014;31(1):45–54. doi: 10.1109/msp.2013.2279179
  16. Liu S, Ringo SW, Chu X, Wang W, Luk. Optimizing CNN-based Hyperspectral Image Classification on FPGAs. SpringerApplied Reconfigurable Computing. 2019;p. 17–31. Available from: https://doi.org/10.1007/978-3-030-17227-5_2


© 2020 Mahendra, Mallikarjunaswamy, Siddesh, Komala, Sharmila. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.