• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 2, Pages: 69-80

Original Article

Evolutionary Computing based Web Service Composition Technique for Scheduling of Workload under Cloud Environment

Received Date:25 October 2021, Accepted Date:05 January 2022, Published Date:31 January 2022


Objectives: The objective of this model is to design a technique to schedule the workload for the computation of web services in the heterogeneous cloud environment. As the Web Service Composition (WSC) for the execution of scientific workload in a heterogeneous cloud computing environment is a challenging task. Modern workload requires dynamic resource provisioning technique as there exist parallelization among sub-tasks and different task demands different Quality of Service (QoS) requirement. Methods: This study presents an Evolutionary Computing based Web Service Composition (EC-WSC) technique to execute a large-scale scientific workload in a heterogeneous cloud environment. A multi-objective metric for improving energy efficiency and resource utilization is modelled. Then, an improved searching mechanism for the dragonfly evolutionary computing algorithm is modelled. Findings: Experiment outcomes show EC-WSC model attains superior performance in execution time performance analysis and energy efficiency performance analysis when compared with existing resource provisioning models of workload service composition such as Deadline and Budget-Aware Workflow Scheduling (DBAWS)(1), Evolutionary Computing Multi-objective optimization for Hybrid Clouds (EC-MOH)(2), Web Service Composition (WSC)(3), and Evolutionary Multi-Objective Optimization for clouds (EMOC)(4) in terms of heterogeneous computing, workload size, multi-objective optimization, QoS metric, and optimization strategy. Our model EC-WSC has proved to be more efficient in terms of energy efficiency by a reduction of 52.13% and also reduction in execution time by 71% when compared with the WSC(3) existing Web Service Composition model. Novelty: Existing resource provisioning predominantly focused on reducing computation cost and time; however, induces task execution latency and energy overhead. However, EC-WSC is modelled to utilize resources more efficiently and meet task QoS requirements by assuring energy minimization constraints.

Keywords: Cloud Computing; Heterogeneous Computing Environment; Multiobjective optimization problem; Resource Provisioning; Workload Scheduling


  1. Calzarossa MC, Vedova MLD, Massari L, Nebbione G, Tessera D. Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds. IEEE Access. 2021;9:89891–89905. Available from: https://dx.doi.org/10.1109/access.2021.3091310
  2. Zhou J, Wang T, Cong P, Lu P, Wei T, Chen M. Cost and makespan-aware workflow scheduling in hybrid clouds. Journal of Systems Architecture. 2019;100:101631. Available from: https://dx.doi.org/10.1016/j.sysarc.2019.08.004
  3. Neelima P, Reddy ARM. An efficient load balancing system using adaptive dragonfly algorithm in cloud computing. Cluster Computing. 2020;23(4):2891–2899. Available from: https://dx.doi.org/10.1007/s10586-020-03054-w
  4. Paknejad P, Khorsand R, Ramezanpour M. Chaotic improved PICEA-g-based multi-objective optimization for workflow scheduling in cloud environment. Future Generation Computer Systems. 2021;117:12–28. Available from: https://dx.doi.org/10.1016/j.future.2020.11.002
  5. Ullah A, Nawi NM, Ouhame S. Recent advancement in VM task allocation system for cloud computing: review from 2015 to2021. Artificial Intelligence Review. 2021;p. 1–45. Available from: https://dx.doi.org/10.1007/s10462-021-10071-7
  6. Devarasetty P, Reddy S. Genetic algorithm for quality of service based resource allocation in cloud computing. Evolutionary Intelligence. 2021;14(2):381–387. Available from: https://link.springer.com/article/10.1007/s12065-019-00233-6
  7. Doppa JR, Kim RG, Isakov M, Kinsy MA, Kwon HJ, Krishna T. Adaptive Manycore Architectures for Big Data Computing. Proceedings of the Eleventh IEEE/ACM International Symposium on Networks-on-Chip. 2017;9:1–8. Available from: https://doi.org/10.3390/pr9091514
  8. Xie G, Zeng G, Li R, Li K. Energy-Aware Processor Merging Algorithms for Deadline Constrained Parallel Applications in Heterogeneous Cloud Computing. IEEE Transactions on Sustainable Computing. 2017;2(2):62–75. Available from: https://dx.doi.org/10.1109/tsusc.2017.2705183
  9. Li Z, Ge J, Hu H, Song W, Hu H, Luo B. Cost and Energy Aware Scheduling Algorithm for Scientific Workflows with Deadline Constraint in Clouds. IEEE Transactions on Services Computing. 2018;11(4):713–726. Available from: https://dx.doi.org/10.1109/tsc.2015.2466545
  10. Lakhani B, Agrawal A. A Task Scheduling Approach for Cloud Environments Employing Evolutionary Algorithms. Journal of Scientific Research. 2021;13(2):423–438. Available from: https://dx.doi.org/10.3329/jsr.v13i2.49944
  11. Mubeen A, Ibrahim M, Bibi N, Baz M, Hamam H, Cheikhrouhou O. Alts: An Adaptive Load Balanced Task Scheduling Approach for Cloud Computing. Processes. 2021;9(9):1514. Available from: https://dx.doi.org/10.3390/pr9091514
  12. Zhu Z, Zhang G, Li M, Liu X. Evolutionary Multi-Objective Workflow Scheduling in Cloud. IEEE Transactions on Parallel and Distributed Systems. 2016;27(5):1344–1357. Available from: https://dx.doi.org/10.1109/tpds.2015.2446459
  13. Khorramnejad K, Ferdouse L, Guan L, Anpalagan A. Performance of integrated workload scheduling and pre-fetching in multimedia mobile cloud computing. Journal of Cloud Computing. 2018;7(1):1–14. Available from: https://dx.doi.org/10.1186/s13677-018-0115-6
  14. Chunlin L, Jianhang T, Youlong L. Hybrid Cloud Adaptive Scheduling Strategy for Heterogeneous Workloads. Journal of Grid Computing. 2019;17(3):419–446. Available from: https://dx.doi.org/10.1007/s10723-019-09481-3
  15. Zhu X, Yang LT, Chen H, Wang J, Yin S, Liu X. Real-Time Tasks Oriented Energy-Aware Scheduling in Virtualized Clouds. IEEE Transactions on Cloud Computing. 2014;2(2):168–180. Available from: https://dx.doi.org/10.1109/tcc.2014.2310452
  16. Bharathi S, Chervenak A, Deelman E, Mehta G, Su MH, Vahi K. Characterization of scientific workflows. In: 2008 Third Workshop on Workflows in Support of Large-Scale Science. IEEE. 2008. 10.1109/WORKS.2008.4723958


© 2022 Hanabaratti & Rodd. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.