• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 31, Pages: 2388-2397

Original Article

Experimental Analysis of Face and Iris Biometric Traits Based on the Fusion Approach

Received Date:12 February 2023, Accepted Date:07 July 2023, Published Date:14 August 2023


Objectives : To develop an efficient algorithm for face and iris multimodal traits on ORL and CASIA dataset and to increase the performance rate and decrease the error rate of the model. The main goal is to increase the performance rate and decrease the error rate of the model. Methods: The proposed algorithm utilizes a fusion of face and iris modalities using Stationary Wavelet Transform (SWT) and Local Binary Pattern (LBP) techniques. The Principal Component Analysis (PCA) is applied to reduce the dimensionality of each sample, improving efficiency while preserving the most relevant information. The relevant characteristics from both face and iris modalities are fused to create a comprehensive pattern for an individual. Findings: The obtained features are compared with the features of the database images using a Euclidean Distance classifier. The performance of the proposed model is evaluated using the ORL and CASIA iris datasets. The accuracy achieved by the proposed algorithm is 99.42%, demonstrating robustness. Novelty: The algorithm introduces feature-level fusion, combining the characteristics of both face and iris modalities. The model encompasses the training and recognition phases within a biometric system. During the training phase, the biometric modality is captured and processed using the fusion of SWT+LBP+PCA techniques to form a template for each user. These templates are later stored in the database for recognition purposes.

Keywords: Biometrics; Trait; Face; Iris; Multimodal; Stationary Wavelet Transform


  1. Ammour B, Bouden T, Boubchir L. Face-Iris Multimodal Biometric System Based on Hybrid Level Fusion. 2018 41st International Conference on Telecommunications and Signal Processing (TSP). 2018;p. 1–5. Available from: https://doi.org/10.1109/TSP.2018.8441279
  2. Kagawade VC, Angadi SA. Fusion of Frequency Domain Features of Face and Iris Traits for Person Identification. Journal of The Institution of Engineers (India): Series B. 2021;102(5):987–996. Available from: https://doi.org/10.1007/s40031-021-00602-9
  3. Balraj E, Suryaprakash M, Vignesh P, Vigneshwar R, Kumar V. Fusion of Iris, Face, Fingerprint using Score Level Mechanism for Biometric Application. IEEE International Conference on Innovative Data Communication Technologies and Application. 2023;p. 265–270. Available from: https://doi.org/10.1109/ICIDCA56705.2023.10099948
  4. Bouzouina Y, Hamami L. Multimodal biometric: Iris and face recognition based on feature selection of iris with GA and scores level fusion with SVM. 2017 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART). 2017;p. 1–7. Available from: https://doi.org/10.1109/BIOSMART.2017.8095312
  5. Farouk RH, Mohsen H, El-Latif YMA. A Proposed Biometric Technique for Improving Iris Recognition. International Journal of Computational Intelligence Systems. 2022;15(1):1–11. Available from: https://doi.org/10.1007/s44196-022-00135-z
  6. Md RS, Gupta G, Thigale SB. Robust Multi-Bio-Metric Authentication Framework in Face and Iris recognition. 2023 2nd International Conference for Innovation in Technology (INOCON). 2023;p. 1–10. Available from: https://doi.org/10.1109/INOCON57975.2023.10100996
  7. Y, SM. Performance Analysis of Multimodal Biometric System Using LBP and PCA. IEEE International Conference on Recent Trends in Electronics and Communication. 2023;p. 1–5. Available from: https://doi.org/10.1109/ICRTEC56977.2023.10111925
  8. Chen Y, Gan H, Chen H, Zeng Y, Xu L, Heidari AA, et al. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet. Neurocomputing. 2023;517:264–278. Available from: https://doi.org/10.1016/j.neucom.2022.10.064
  9. Ammour B, Boubchir L, Bouden T, Ramdani M. Face–Iris Multimodal Biometric Identification System. Electronics. 2020;9(1):85. Available from: https://doi.org/10.3390/electronics9010085
  10. Poornima S, Subramanian S. Experimental Analysis of Biometric System using Various Multimodal Fusion Algorithms. Journal of Physics: Conference Series. 2022;2318(1):012037. Available from: https://doi.org/10.1088/1742-6596/2318/1/012037
  11. Sunil S, Harakannanavar, Prashanth CR, Raja KB. Iris Recognition using Bicubic Interpolation and Multi Level DWT Decomposition. Springer International Conference on Computational Vision and Bio Inspired Computing. 2020;p. 1146–1153. Available from: https://doi.org/10.1007/978-3-030-37218-7_120
  12. Vishwanath C, Shanmukhappa A. A new scheme of polar Fast Fourier Transform Code for iris recognition through symbolic modelling approach”. Journal of Expert Systems with Applications. 2022;197. Available from: https://doi.org/10.1016/j.eswa.2022.116745
  13. Rabab R. Feature-Level versus Score-Level Fusion in the Human Identification System. Applied Computational Intelligence and Soft Computing. 2021;2021:1–10. Available from: https://doi.org/10.1155/2021/6621772
  14. Harakannanavar SS, Prashanth CR, Raja K, Patil S. Face Recognition based on SWT, DCT and LTP. Springer International Conference on Integrated Intelligent Computing, Communication and Security. 2020;p. 565–573. Available from: https://doi.org/10.1007/978-981-10-8797-4_57
  15. Jha M, Tiwari A, Himansh M, Manikandan VM. Face Recognition: Recent Advancements and Research Challenges. 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT). 2022;p. 1–6. Available from: https://doi.org/10.1109/ICCCNT54827.2022.9984308


© 2023 Kumari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.