• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 26, Pages: 2609-2624

Original Article

Experimental and numerical investigations of optimum process window for friction stir welding using flat faced tool pin

Received Date:09 June 2020, Accepted Date:08 July 2020, Published Date:27 July 2020


Background/Objectives: In friction stir welding, tools with flat faced pin delivers better weld quality than cylindrical pin. In flat faced pin, improper selection of process parameters often results premature tool failure. Being easily controllable process parameters, proper selection of tool rotation speed with respect to the tool advancing speed not only avoids unwanted weld defects but also enhances tool life. Methods: An integrated experimental and numerical comparative study is made between air and water cooled processes to understand the effects of heat dissipation through the boundaries on temperature distribution. Findings: Optimum range of Pseudo Heat Index (PHI) is achieved by comparing the obtained temperature distribution with material softening temperature. Optimum range of weld speed with respect to the tool rotation speed is derived through the optimum Pseudo heat index. Experimental study on the joint strength validates the proposed optimal process parameter ranges. Novelty : This study outlines a novel approach to develop an optimum process window based on PHI for air and water cooled friction stir welding using tools with flat faced pin.

Keywords: Optimization; friction stir welding; thermomechanical; pseudo heat index; experimentation; numerical modeling


  1. Bayazid SM, Farhangi H, Ghahramani A. Effect of Pin Profile on Defects of Friction Stir Welded 7075 Aluminum Alloy. Procedia Materials Science. 2015;11:12–16. Available from: https://dx.doi.org/10.1016/j.mspro.2015.11.013
  2. Leon JS, Jayakumar V. Effect of Tool Shoulder and Pin Cone Angles in Friction Stir Welding using Non-circular Tool Pin. Journal of applied and computational mechanics. 2020;6(3). Available from: https://doi.org/10.22055/JACM.2019.29340.1585
  3. Sabeerushen JR, Kumar V. Influence of tool pin profile on the tensile behavior of dissimilar friction stir welded joints of aluminium alloys. International Journal of Innovative Research in Science, Engineering and Technology. 2016;5:5376–5382. Available from: https://doi.org/10.15680/IJIRSET.2016.0504168
  4. Gharaibeh N, Jawdat A, Al-Jarrah S, Sawalha. Effect of pin profile mechanical properties of 6061 Al alloy welded joints prepared by friction stir welding. International Journal of mechanics and applications. 2016;6(3):39–42. Available from: https://doi.org/10.5923/j.mechanics.20160603.01
  5. Leon JS, Jayakumar V. Transient heat input model for friction stir welding using non-circular tool pin. FME Transactions. 2020;48(2):137–142. Available from: https://dx.doi.org/10.5937/fmet2001137l
  6. Liang Xp, Li Hz, Li Z, Hong T, Ma B, Liu Sd, et al. Study on the microstructure in a friction stir welded 2519-T87 Al alloy. Materials & Design. 2012;35:603–608. Available from: https://dx.doi.org/10.1016/j.matdes.2011.10.009
  7. Sheng X, Li K, Wu W, Yang Y, Liu Y, Zhao Y, et al. Microstructure and Mechanical Properties of Friction Stir Welded Joint of an Aluminum Alloy Sheet 6005A-T4. Metals. 2019;9(11):1152. Available from: https://dx.doi.org/10.3390/met9111152
  8. Leon JS, Jayakumar. An investigation of analytical modeling of friction stir welding. International Journal of Mechanical and Production Engineering Research and Development. 2019;9(1):179–190. Available from: https://doi.org/10.24247/ijmperdfeb201918
  9. Li M, Zhang C, Wang D, Zhou L, Wellmann D, Tian Y. Friction Stir Spot Welding of Aluminum and Copper: A Review. Materials. 2019;13(1):156. Available from: https://dx.doi.org/10.3390/ma13010156
  10. Soundararajan V, Zekovic S, Kovacevic R. Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061. International Journal of Machine Tools and Manufacture. 2005;45(14):1577–1587. Available from: https://dx.doi.org/10.1016/j.ijmachtools.2005.02.008
  11. Mehta M, Reddy GM, Rao AV, De A. Numerical modeling of friction stir welding using the tools with polygonal pins. Defence Technology. 2015;11(3):229–236. Available from: https://dx.doi.org/10.1016/j.dt.2015.05.001
  12. Garg A, Raturi M, Bhattacharya A. Influence of additional heating in friction stir welding of dissimilar aluminum alloys with different tool pin profiles. The International Journal of Advanced Manufacturing Technology. 2019;105(1-4):155–175. Available from: https://dx.doi.org/10.1007/s00170-019-04186-z
  13. Arora A, De A, DebRoy T. Toward optimum friction stir welding tool shoulder diameter. Scripta Materialia. 2011;64(1):9–12. Available from: https://dx.doi.org/10.1016/j.scriptamat.2010.08.052
  14. J SL, G B, V J. Analytical and experimental investigations of optimum thermomechanical conditions to use tools with non-circular pin in friction stir welding. The International Journal of Advanced Manufacturing Technology. 2020;107(11-12):4925–4937. Available from: https://dx.doi.org/10.1007/s00170-020-05341-7
  15. Cui S, Chen ZW, Robson JD. A model relating tool torque and its associated power and specific energy to rotation and forward speeds during friction stir welding/processing. International Journal of Machine Tools and Manufacture. 2010;50:1023–1030. Available from: https://dx.doi.org/10.1016/j.ijmachtools.2010.09.005
  16. Hamilton C, Dymek S, Sommers A. A thermal model of friction stir welding in aluminum alloys. International Journal of Machine Tools and Manufacture. 2008;48(10):1120–1130. Available from: https://dx.doi.org/10.1016/j.ijmachtools.2008.02.001
  17. Zhang ZH, Li WY, Shen J. Effect of back plate diffusivity on microstructure and mechanical properties of friction stir welded joints. Materials and Design. 2013;50:551–557.
  18. Hamilton C, Kopyściański M, Senkov O, Dymek S. A Coupled Thermal/Material Flow Model of Friction Stir Welding Applied to Sc-Modified Aluminum Alloys. Metallurgical and Materials Transactions A. 2013;44(4):1730–1740. Available from: https://dx.doi.org/10.1007/s11661-012-1512-y
  19. Colegrove PA, Shercliff HR, Zettler R. Model for predicting heat generation and temperature in friction stir welding from the material properties. Science and Technology of Welding and Joining. 2007;12:284–297. Available from: https://dx.doi.org/10.1179/174329307x197539


© 2020 Stephen Leon, Bharathiraja, Jayakumar.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.