• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 27, Pages: 2284-2292

Original Article

Fuzzy Radio Reciprocal L-Labeling on Certain Chemical Graphs

Received Date:19 April 2021, Accepted Date:15 July 2021, Published Date:09 August 2021


Objectives: The objective of this study is to reduce the interference of the signals between Wi-Fi devices where the fuzzy values of the frequencies are from the closed interval [0,1]. Method: A new methodology is introduced to reduce the interference of the signals between Wi-Fi devices that is fuzzy radio reciprocal L-labeling. Findings: Here the general formula of fuzzy radio reciprocal L-labeling has been newly introduced to apply this concept in chemical graphs. Further results and discussions are also proved in this connection using the fuzzy chemical graph structure, where the distance and the frequencies between the routers of Wi-Fi connections are assigned fuzzy weights based on fuzzy radio reciprocal L-labeling, so that interference can be reduced and the signal strength is optimized.

Keywords: Nano sheet; Sirpinski gasket graph ( S n ); Sirpinski like graph (S (n; 4)); g ( s) weight of lines; t (a) weight of points


  1. Hale WK. Frequency assignment: Theory and application. In: Proceeding of the IEEE. (Vol. 68, pp. 1497-1514) 1980.
  2. JR. Griggs Labeling Graphs with a Condition at Distance 2. Siam Journal on Discrete Mathematics. 1992;5(4):586–595.
  3. Heuvel JVD, Leese RA, MAS. Shepherd Graph labeling and radio channel assignment. Journal of Graph Theory. 1998;29(4):263–283. Available from: https://dl.acm.org/doi/10.5555/1379171.1379176
  4. Shao Z, Zhang D. The L(2,1)- labeling on graphs and the frequency assignment problem. Applied Mathematics Letters. 2008;21(1):37–41. Available from: https://doi.org/10.1016/j.aml.2006.08.029
  5. Gani AN, Radha K. The Degree of a Vertex in some Fuzzy Graphs. International Journal of Algorithms, Computing and Mathematics, Eashwar Publications. 2009;3(2):107–116.
  6. Panigrahi AP. Survey on Radio k-Colorings of Graphs. AKCE International Journal of Graphs and Combinatorics. 2009;6(1):161–169. Available from: 10.1080/09728600.2009.12088883
  7. Massa'deh MO, Gharaibeh KN. Some Properties on Fuzzy Graphs. Advances in Fuzzy Mathematics. Research India Publications. 2011;2(6):245–252. Available from: http://www.ripublication.com/afm.htm
  8. Gani AN, RS. A Note on Fuzzy Labeling. International Journal of Fuzzy Mathematical Archive. 2014;4(2):88–95.
  9. Nagoorgani A, Subahashini DR. Fuzzy Labeling Tree. International Journal of Pure and Apllied Mathematics. 2014;90(2):131–141. Available from: https://dx.doi.org/10.12732/ijpam.v90i2.3
  10. Tom M, Sunith MS. Muraleedhtan Shetty sunith. Strong sum distance in fuzzy graph. Springar Plus. 2015;4(214). Available from: https://doi.org/10.1186/s40064-015-0935-5
  11. Nazeer S, Khan S, Kausar I, Nazeer W. Radio Labelling and Radio Number for Generalized Caterpillar Graphs. Journal of Applied Mathematics and Informatics. 2016;34(6):551–565. Available from: 10.14317/jami.2016.451
  12. Mahapatra R, Samanta S, Allahviranloo T, Pal M. Madhumangal Pal. Radio fuzzy graphs and assignment of frequency in radio stations. Computational and Applied Mathematics. 2019;38(4):1–2. Available from: https://link.springer.com/article/10.1007/s40314-019-0888-3
  13. John BS, Mela JV. Radio labeling of complete related graphs. Compliance Engineering Journal. 2020;11(2):173–187.
  14. Uma J, Bhargavi RM. Radio labeling on some corona graphs. AIP Conference Proceeding. 2020;2227:1–7. Available from: https://doi.org/10.1063/5.0025217
  15. Chavez A, Liu DDF, Shurman M. Optimal radio-k-labelings of trees. European Journal of Combinatorics. 2021;91(91):103203. Available from: https://dx.doi.org/10.1016/j.ejc.2020.103203
  16. Chartrand G, Erwin D, Zhang P. A graph labelling problem suggested by FM channel restrictions. Bull. Inst. Combin. Appl. 2005;43(114):43–57.
  17. Mordeson JN, Nair PS. Series Title Studies in Fuzziness and Soft Computing. In: Fuzzy Graphs and Fuzzy Hypergraphs (1). (pp. 19-81) 2000.
  18. Sunitha MS, Mathew S. Fuzzy Graph Theory: A Survey. Annals of Pure and Applied Mathematics. 2013;4(1):92–110.
  19. Gani AN, Akram M, Subahashini DR(. Novel Properties of Fuzzy Labeling Graphs. Journal of Mathematics. 2014;2014(70):1–6. Available from: https://dx.doi.org/10.1155/2014/375135
  20. Xavier A, Theresal SS, Raja MJ. Induced H-packing K-Partition number for certain nanotubes and chemical graphs. Journal of Mathematical Chemistry. 2020;(58) 1177–1196. Available from: https://link.springer.com/article/10.1007/s10910-020-01124-3
  21. Xavier DA, Rosary M, Arokiaraj A. Topological Properties of Sierpinski Gasket Rhombus Graphs. International Journal of Mathematics and Soft Computing. 2014;4(2):95. Available from: https://dx.doi.org/10.26708/ijmsc.2014.2.4.10
  22. Vinoth SA, Bharathi T. Radio Reciprocal Membership Function on Cycle Related Graphs. International Journal of Recent Technology and Engineering. 2019;4(8). Available from: https://www.ijrte.org/wp-content/uploads/papers/v8i4/B3583078219.pdf


© 2021 Bharathi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.