• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 10, Pages: 698-706

Original Article

Green synthesis of Ceriumoxide Nanoparticles using Bacopa monnieri Leaf Extract - In vitro A ntioxidant Activity

Received Date:28 November 2022, Accepted Date:17 January 2023, Published Date:09 March 2023


Objectives: Cerium oxide nanoparticles were synthesized by a rapid green method using an aqueous leaf extract of Bacopa monnieri to investigate its antioxidant activity. Methods: Cerium oxide nanoparticles (CeO2 NPs) were synthesized using Bacopa monnieri leaf extract as a stabilizing agent by solution combustion method. Characterization techniques like FTIR, PXRD,SEMEDAX, HR-TEM, UV-visible, and Raman spectroscopy confirmed the synthesized NPs. The antioxidant capacity was assessed by in vitro Hydroxyl radical scavenging assay. Findings: The biosynthesized CeO2 NPs possess tiny spherical shapes and sizes ranging from 5-50nm, and the average particle size is 27 nm as measured by HR-TEM. XRD and Raman confirm the nanoparticle’s polycrystalline nature and face-centered cubic fluorite structure with maximum UV-visible absorbance at l max 301.2nm. The biosynthesized CeO2 NPs exhibited better scavenging activity than Vitamin C. However, further in vitro and in vivo studies must be warranted to explore its mechanism and therapeutic potential. Novelty: To the best of our knowledge, this is the first report involving the green synthesis of cerium oxide nanoparticles using Bacopa monnieri leaf extract, which exhibited potent hydroxyl radical scavenging activity which can be a promising therapeutic candidate in oxidative stress-related disorders.

Keywords: CeO2 NPs; Green synthesis; Bacopa monnieri; HR-TEM; Hydroxyl radical


  1. Miri A, Darroudi M, Sarani M. Biosynthesis of cerium oxide nanoparticles and its cytotoxicity survey against colon cancer cell line. Applied Organometallic Chemistry. 2020;34(1). Available from: https://doi.org/10.1002/aoc.5308
  2. Mohammadzadeh V, Barani M, Amiri MS, Yazdi M, Hassanisaadi M, Rahdar A, et al. Applications of plant-based nanoparticles in nanomedicine: A review. 2022. Available from: https://doi.org/10.1016/j.scp.2022.100606
  3. Khan M, Mashwani Z, Ikram M, Raja NI, Mohamed AH, Ren G, et al. Efficacy of Green Cerium Oxide Nanoparticles for Potential Therapeutic Applications. Circumstantial Insight on Mechanistic Aspects. Nanomaterials. 2022;12(12):2117. Available from: https://doi.org/10.3390/nano12122117
  4. Estevez AY, Ganesana M, Trentini JF, Olson JE, Li G, Boateng YO, et al. Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA. Biomolecules. 2019;9(10):562. Available from: https://doi.org/10.3390/biom9100562
  5. Hamidian K, Saberian MR, Miri A, Sharifi F, Sarani M. Doped and un-doped cerium oxide nanoparticles: Biosynthesis, characterization, and cytotoxic study. Ceramics International. 2021;47(10):13895–13902. Available from: https://doi.org/10.1016/j.ceramint.2021.01.256
  6. Adebayo OA, Akinloye O, Adaramoye OA. Cerium Oxide Nanoparticles Attenuate Oxidative Stress and Inflammation in the Liver of Diethylnitrosamine-Treated Mice. Biological Trace Element Research. 2020;193(1):214–225. Available from: https://doi.org/10.1007/s12011-019-01696-5
  7. Al-Snafi AE, Al-Sa'idy H, Hamid HK. The utilization of plant extracts/biomaterials for the green synthesis of nanoparticles, their biological activity, and mode of action. Research Journal of Biology and Pharmacy. 2022;06(01):17–46. Available from: https://doi.org/10.53022/oarjbp.2022.6.1.0063
  8. Chakraborty N, Banerjee J, Chakraborty P, Banerjee A, Chanda S, Ray KS, et al. Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chemistry Letters and Reviews. 2022;15(1):187–215. Available from: https://doi.org/10.1080/17518253.2022.2025916
  9. Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters. 2021;19(1):355–374. Available from: https://doi.org/10.1007/s10311-020-01074-x
  10. Yazdi T, Ehsan M, Amiri MS, Akbari S, Sharifalhoseini M, Nourbakhsh F, et al. Green synthesis of silver nanoparticles using helichrysum graveolens for biomedical applications and waste water treatment. BioNanoScience. 2020;10(4):1121–1127. Available from: https://doi.org/10.1007/s12668-020-00794-2
  11. Muthuvel A, Jothibas M, Manoharan C, Jayakumar SJ. Synthesis of CeO2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. Research on Chemical Intermediates. 2020;46(5):2705–2729. Available from: https://doi.org/10.1007/s11164-020-04115-w
  12. Ibrahim AM, Mohamed F, Al-Quraishy S, Abdel-Baki AAS, Abdel-Tawab H. Green synthesis of Cerium oxide / Moringa oleifera seed extract nano-composite and its molluscicidsal activities against biomophalaria alexanderina. Journal of King Saud University - Science. 2021;33(3):101368. Available from: https://doi.org/10.1016/j.jksus.2021.101368
  13. Magudieshwaran R, Ishii J, Raja KCN, Terashima C, Venkatachalam R, Fujishima A, et al. Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Materials Letters. 2019;239:40–44. Available from: https://doi.org/10.1016/j.matlet.2018.11.172
  14. Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules. 2020;25(20):4613. Available from: https://doi.org/10.3390/molecules25204613
  15. Banerjee S, Anand U, Ghosh S, Ray D, Ray P, Nandy S, et al. Bacosides from <scp> <i>Bacopa monnieri</i> </scp> extract: An overview of the effects on neurological disorders. Phytotherapy Research. 2021;35(10):5668–5679. Available from: https://doi.org/10.1002/ptr.7203
  16. Brimson JM, Brimson SM, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: analysis of the available clinical data. Scientific Reports. 2021;11(1):1–11. Available from: https://doi.org/10.1038/s41598-020-80045-2
  17. Yulizar Y, Kusrini E, Apriandanu DOB, Nurdini N. Datura metel L. Leaves extract mediated CeO2 nanoparticles: Synthesis, characterizations, and degradation activity of DPPH radical. Surfaces and Interfaces. 2020;19:100437. Available from: https://doi.org/10.1016/j.surfin.2020.100437
  18. Navada MK, Karnikkar NG, D’souza JN, Kouser SN, Aroor G, Kudva J, et al. Biosynthesis of phyto functionalized cerium oxide nanoparticles mediated from Scoparia dulsis L. for appraisal of anti-cancer potential against adenocarcinomic lung cancer cells and paracetamol sensing potentiality. Environmental Science and Pollution Research. 2022;30(7):18901–18920. Available from: https://doi.org/10.1007/s11356-022-23500-z
  19. Ganeshkar MP, Goder PH, Mirjankar MR, Gaddigal AT, Shivappa P, Kamanavalli CM. Characterization and screening of anticancer properties of cerium oxide nanoparticles synthesized using <i>Averrhoa carambola</i> plant extract. Inorganic and Nano-Metal Chemistry. 2022;p. 1–14. Available from: https://doi.org/10.1080/24701556.2022.2077374
  20. Diab TA, Donia T, Saad-Allah KM. Characterization, antioxidant, and cytotoxic effects of some Egyptian wild plant extracts. Beni-Suef University Journal of Basic and Applied Sciences. 2021;10(1):1–13. Available from: https://doi.org/10.1186/s43088-021-00103-0
  21. Lakshmeesha TR, Kalagatur NK, Mudili V, Mohan CD, Rangappa S, Prasad BD, et al. Biofabrication of Zinc Oxide Nanoparticles With Syzygium aromaticum Flower Buds Extract and Finding Its Novel Application in Controlling the Growth and Mycotoxins of Fusarium graminearum. Frontiers in Microbiology. 2019;10:1244. Available from: https://doi.org/10.3389/fmicb.2019.01244
  22. Adefegha SA, Olasehinde TA, Oboh G. Essential Oil Composition, Antioxidant, Antidiabetic and Antihypertensive Properties of Two <i>Afromomum</i> Species. Journal of Oleo Science. 2017;66(1):51–63. Available from: https://doi.org/10.5650/jos.ess16029
  23. Naz S, Kazmi STB, Zia M. CeO <sub>2</sub> nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment. Journal of Biochemical and Molecular Toxicology. 2019;33(5):e22291. Available from: https://doi.org/10.1002/jbt.22291
  24. Korotkova АM, Borisovna PO, Aleksandrovna GI, Bagdasarovna KD, Vladimirovich BD, Vladimirovich KD, et al. "Green" Synthesis of Cerium Oxide Particles in Water Extracts Petroselinum crispum. Current Nanomaterials. 2019;4(3):176–190. Available from: https://doi.org/10.2174/2405461504666190911155421
  25. Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering: C. 2015;49:408–415. Available from: https://doi.org/10.1016/j.msec.2015.01.042
  26. Pardhiya S, Priyadarshini E, Rajamani P. In vitro antioxidant activity of synthesized BSA conjugated manganese dioxide nanoparticles. SN Applied Sciences. 2020;2(9):1–12. Available from: https://doi.org/10.1007/s42452-020-03407-5
  27. Rajan AR, Vilas V, Rajan AR, John A, Philip D. Synthesis of CeO2 nanostructures with its exceptional biological and chemocatalytic activities: a comparative study. Bulletin of Materials Science. 2021;44(1):1–10. Available from: https://doi.org/10.1007/s12034-020-02315-z


© 2023 Gopinath et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.