• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 9, Pages: 605-613

Original Article

Green Synthesis of Silver Nanoparticles from Macrocybe gigantea and its Effect Against Food Borne Pathogens

Received Date:27 November 2022, Accepted Date:06 January 2023, Published Date:02 March 2023

Abstract

Objectives: To evaluate the efficacy of edible mushroom, Macrocybe gigantea for the biosynthesis of silver nanoparticles, antioxidant property and antibacterial property. Methods: M. gigantea pure culture was isolated using tissue culture in a petri-plate comprising potato dextrose agar (PDA) medium, spawn was prepared using sorghum grains and mushrooms were grown indoors using paddy straw in an uniquely designed environment for mushroom growth. The green synthesis of silver nanoparticles with AgNO3, antioxidant activity and antibacterial potential against a few food-borne bacteria were all investigated. The formation of AgNPs was further confirmed using a UV-Visible spectrophotometer. The silver nanoparticles were examined using Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The disc diffusion method was used to test the bacteriostatic and bactericidal activity of synthesised silver nanoparticles against selected food-borne bacteria such as Escherichia coli, Bacillus subtilis and Streptococcus mutans. Findings: The existence of phytochemicals such as alkaloids, terpenoids, phenols, flavonoids, proteins, and carbohydrates was revealed. Furthermore, the AgNPs produced from M.gigantea demonstrated absorbance at 420nm in a UV-Visible spectrophotometer. According to the SEM pictures, AgNPs appear spherical with diameters ranging from 50 to 70nm. At 100g/mL, the DPPH antioxidant assay exhibited the maximum percentage of inhibition of 67.94%, with an IC50 value of 57.07g/mL. The produced AgNPs also inhibited bacterial growth significantly. Green synthesised AgNPs from M.gigantea were produced in an environmentally friendly, quick and simple technique that functions as an antibacterial agent against certain food-borne pathogens such as E. coli, Bacillus subtilis, and Streptococcus mutans. The antibacterial screening demonstrates the biocidal ability of AgNPs from M.gigantea, which could be employed in the food processing and packaging industries. Novelty: This study is regarded as the first attempt to synthesise AgNPs from M.gigantea for use against food-borne bacteria.

Keywords: Macrocybe gigantea; Agnps; MycoNanoparticle; Antibacterial Activity; DPPH And Antioxidant

References

  1. Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M, Pasa S, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLOS ONE. 2019;14(6):e0216496. Available from: https://doi.org/10.1371/journal.pone.0216496
  2. Nasrollahzadeh M, Yek SM, Motahharifar N, Gorab MG. Recent Developments in the Plant‐Mediated Green Synthesis of Ag‐Based Nanoparticles for Environmental and Catalytic Applications. The Chemical Record. 2019;19(12):2436–2479. Available from: https://doi.org/10.1002/tcr.201800202
  3. Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. Journal of Nanostructure in Chemistry. 2018;8(3):217–254. Available from: https://doi.org/10.1007/s40097-018-0267-4
  4. Shaikh WA, Chakraborty S, Owens G, Islam RU. A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): the wonder particle of the past decade. Applied Nanoscience. 2021;11(11):2625–2660. Available from: https://doi.org/10.1007/s13204-021-02135-5
  5. Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials. 2021;14(24):7640. Available from: https://doi.org/10.3390/ma14247640
  6. Scott E. Food Safety and Foodborne Disease in the 21<sup>st</sup>Century. Canadian Journal of Infectious Diseases. 2003;14(5):277–280. Available from: https://doi.org/10.1155/2003/363984
  7. Lee NYY, Ko WCC, Hsueh PRR. Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Frontiers in Pharmacology. 2019;10:1153. Available from: https://doi.org/10.3389/fphar.2019.01153
  8. Pegler DN, Lodge DJ, Nakasone KK. The Pantropical Genus Macrocybe Gen. nov. Mycologia. 1998;90(3):494. Available from: https://doi.org/10.2307/3761408
  9. Borah TR, Singh AR, Paul P, Talang H, Kumar B, Hazarika S. Spawn Production and Mushroom Cultivation Technology. 2020. Available from: https://www.researchgate.net/publication/341822811
  10. Sharma K, Mushroom. Cultivation and Processing. International Journal of Food Processing Technology. 2015;5. Available from: https://core.ac.uk/download/pdf/230904491.pdf
  11. Rahimah SB, Djunaedi DD, Soeroto AY, Bisri T. The The Phytochemical Screening, Total Phenolic Contents and Antioxidant Activities in Vitro of White Oyster Mushroom (Pleurotus Ostreatus) Preparations. Open Access Macedonian Journal of Medical Sciences. 2019;7(15):2404–2412. Available from: https://doi.org/ 10.3889/oamjms.2019.741
  12. Naraian R, Abhishek AK. Green synthesis and characterization of silver NPs using oyster mushroom extract for antibacterial efficacy. Journal of Chemistry, Environmental Sciences and its Applications. 2020;7(1):13–21. Available from: https://doi.org/10.15415/jce.2020.71003
  13. Talie MD, Wani AH, Ahmad N, Bhat MY, War JM. Green synthesis of silver nanoparticles (AgNPs) using Helvellaleucopus Pers. and their antimycotic activity against fungi causing fungal rot of apple. Asian Journal of Pharmaceutical and Clinical Research. 2020;13(4):161–165. Available from: https://doi.org/10.22159/ajpcr.2020.v13i4.37024
  14. Al-Dbass AM, Daihan SA, Al-Nasser AA, Al-Suhaibani LS, Almusallam J, Alnwisser BI, et al. Biogenic Silver Nanoparticles from Two Varieties of Agaricus bisporus and Their Antibacterial Activity. Molecules. 2022;27(21):7656. Available from: https://doi.org/10.3390/molecules27217656
  15. Sankaranarayanan NK, Kumari SK, Kathiravan S. Qualitative phytochemical screening of various solvent extracts of Calocybeindica, milky mushroom. International Journal of Advanced Research. 2020;8(5):573–577. Available from: http://dx.doi.org/10.21474/IJAR01/10962
  16. Khumlianlal J, Sharma KC, Singh LM, Mukherjee PK, Indira S. Nutritional Profiling and Antioxidant Property of Three Wild Edible Mushrooms from North East India. Molecules. 2022;27(17):5423. Available from: https://doi.org/10.3390/molecules27175423
  17. Ajith TA, Janardhanan KK. Indian Medicinal Mushrooms as a Source of Antioxidant and Antitumor Agents. Journal of Clinical Biochemistry and Nutrition. 2007;40(3):157–162. Available from: https://doi.org/10.3164/jcbn.40.157
  18. Mulvaney P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir. 1996;12(3):788–800. Available from: https://doi.org/10.1021/la9502711
  19. Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd_Allah EF, Hashem A, et al. Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens. Molecules. 2018;23(3):655. Available from: https://doi.org/10.3390/molecules23030655

Copyright

© 2023 Nirmala & Siva. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.