• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 8, Pages: 318-325

Original Article

Homomorphic Encryption Based Privacy Protection for Personalised Web Search

Received Date:06 January 2022, Accepted Date:28 January 2022, Published Date:25 February 2022


Objective: Privacy of user information in web search applications is traded off with quality of search results generated for a query by web search engine. In this article, we have developed a novel model utilizing Homomorphic Encryption for privacy protection of the user without compromising the quality of search results and response time. Methods: Response time is calculated using the GreedyDP and GreedyIL techniques, which is critical since encryption is usually followed by complicated calculations. Using the Homomorphic Encryption (HE) technique the user request is encrypted, rendering it unreadable or interpretable by eavesdroppers. Although the server will be unable to decode the requests, it will be possible to process those using algorithms and computations. The suggested model was utilized to evaluate the reaction time performance of four distinct current HE techniques. Findings: From the proposed model, it is inferred that, the performance of Gentry HE is superior to others since it takes 6% less time than its nearest competitor Paillier. Implementations show that the developed model, query encryption, does not create response delays and so supports the framework. Novelty: This research proposes a new PWS model with HE to increase data security and privacy in online search applications. The suggested study uses the GreedyDP and GreedyIL new methodologies.

Keywords: Personalised Web Search; user profile; Homomorphic Encryption; GreedyDP; GreedyIL


  1. Grida M, Fayed L, Hassan M. User Profile: Theoretical Background. International Journal of Engineering Trends and Technology. 2020;68(8):10–17. Available from: https://dx.doi.org/10.14445/22315381/ijett-v68i8p203s
  2. Jing M, Zhicheng D, Ji-Rong W. FedPS: A Privacy Protection Enhanced Personalized Search Framework. In: Proceedings of the Web Conference 2021. (pp. 3757-3766) Association for Computing Machinery. 2021.
  3. Yao J, Dou Z, Wen JR. FedPS: A Privacy Protection Enhanced Personalized Search Framework. Proceedings of the Web Conference 2021. 2021. doi: 10.1145/3442381.3449936
  4. Wu Z, Lu C, Zhao Y, Xie J, Zou D, Su X. The Protection of User Preference Privacy in Personalized Information Retrieval: Challenges and Overviews. Libri. 2021;71(3):227–237. Available from: https://dx.doi.org/10.1515/libri-2019-0140
  5. Wu Z, Li R, Zhou Z, Guo J, Jiang J, Su X. A user sensitive subject protection approach for book search service. Journal of the Association for Information Science and Technology. 2020;71(2):183–195. Available from: https://dx.doi.org/10.1002/asi.24227
  6. Wu Z, Wang R, Li Q, Lian X, Xu G, Chen E, et al. A Location Privacy-Preserving System Based on Query Range Cover-Up or Location-Based Services. IEEE Transactions on Vehicular Technology. 2020;69(5):5244–5254. Available from: https://dx.doi.org/10.1109/tvt.2020.2981633
  7. Wu Z, Xie J, Lian X, Pan J. A privacy protection approach for XML-based archives management in a cloud environment. The Electronic Library. 2019;37(6):970–983. Available from: https://dx.doi.org/10.1108/el-05-2019-0127
  8. Shuqi L, Zhicheng D, Chenyan X, Xiaojie W, Ji RW. Knowledge Enhanced Personalized Search. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. (pp. 709-718) Association for Computing Machinery. 2020.
  9. Wu Q, He K, Chen X. Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge Based Framework. IEEE Open Journal of the Computer Society. 2020;1:35–44. Available from: https://dx.doi.org/10.1109/ojcs.2020.2993259
  10. Li T, Sahu AK, Talwalkar A, Smith V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine. 2020;37(3):50–60. Available from: https://dx.doi.org/10.1109/msp.2020.2975749
  11. Li E, Zeng L, Zhou Z, Chen X. Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing. IEEE Transactions on Wireless Communications. 2020;19(1):447–457. Available from: https://dx.doi.org/10.1109/twc.2019.2946140
  12. Feng J, Rong C, Sun F, Guo D, Li Y. PMF: A privacy-preserving human mobility prediction framework via federated learning. Proc. ACM Interactive Mobile Wearable Ubiquitous Technologies. 2020;4:1–21. Available from: https://doi.org/10.1145/3381006


© 2022 Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.