• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 11, Pages: 1003-1015

Original Article

HSBRS: Hybrid Sentiment-based Collaborative Architecture for Book Recommendation System

Received Date:16 January 2024, Accepted Date:09 February 2024, Published Date:29 February 2024


Objectives: This study presents an efficient approach "Hybrid Sentiment-based Collaborative Architecture" to enhance book recommendation systems. This novel approach integrates sentiment analysis methodologies that encompass Lexicon-based and Deep Learning-based techniques, in conjunction with Collaborative Filtering to offer a more personalized recommendation experience. Methods: This study outlines the methodology for comparing and analyzing various Collaborative Filtering and sentiment analysis techniques to identify an optimal combination. A public dataset “Amazon book review dataset” is employed for the experimental work. In this experimental study, 75% of the dataset serves as the training dataset, and 25% is designated as the testing set. Evaluation of the proposed hybrid approach involves standard metrics such as accuracy, precision, recall, and F1-Score. Findings: The proposed hybrid architecture overcomes the drawbacks of traditional recommendation systems by using users' past behavior and preferences through Collaborative Filtering, and incorporating sentiment analysis to understand the emotional tone of reviews. Results and conclusions derived from evaluating the effectiveness of the hybrid architecture in book recommendations provide insights into potential advancements in recommendation system paradigms. The proposed approach improves the recognition accuracy by 80.95% as compared to other existing systems in literature and possible hybridizations. The proposed methodology demonstrates significant enhancements in precision and F1-Score. Novelty: The proposed framework employs numerical ratings and sentiments to prognosticate recommendations, with the ultimate suggestion incorporating the relative significance of product sentiments and numerical ratings using the Collaborative Filtering technique and sentiment analysis technique incorporating Lexicon-based and Deep Learning-based techniques.

Keywords: Recommendation Systems, Book Recommendation System, Machine Learning, Sentiment Analysis, Deep Learning


  1. Chen S, Peng Y. Matrix factorization for recommendation with explicit and implicit feedback. Knowledge-Based Systems. 2018;158:109–117. Available from: https://doi.org/10.1016/j.knosys.2018.05.040
  2. Rana A, Deeba K. Online Book Recommendation System using Collaborative Filtering (With Jaccard Similarity) In: International Conference on Physics and Photonics Processes in Nano Sciences , Journal of Physics: Conference Series. (Vol. 1362, pp. 1-8) IOP Publishing. 2019.
  3. Margaris D, Vassilakis C, Georgiadis P. Query personalization using social network information and collaborative filtering techniques. Future Generation Computer Systems. 2018;78(Part 1):440–450. Available from: https://doi.org/10.1016/j.future.2017.03.015
  4. Rohit, Sabitha S, Choudhury T. Proposed Approach for Book Recommendation Based on User k-NN. In: Advances in Computer and Computational Sciences, Advances in Intelligent Systems and Computing. (Vol. 554, pp. 543-558) Singapore. Springer. 2018.
  5. Sohail SS, Siddiqui J, Ali R. Feature-Based Opinion Mining Approach (FOMA) for Improved Book Recommendation. Arabian Journal for Science and Engineering. 2018;43(12):8029–8048. Available from: https://doi.org/10.1007/s13369-018-3282-3
  6. Sohail SS, Siddiqui J, Ali R. Book Recommender System using Fuzzy Linguistic Quantifier and Opinion Mining. In: The International Symposium on Intelligent Systems Technologies and Applications, ISTA 2016, Advances in Intelligent Systems and Computing. (Vol. 530, pp. 573-583) Springer, Cham. 2016.
  7. Sohail SS, Siddiqui J, Ali R. OWA based Book Recommendation Technique. Procedia Computer Science. 2015;62:126–133. Available from: https://doi.org/10.1016/j.procs.2015.08.425
  8. Sohail SS, Siddiqui J, Ali R. Book Recommender System Using Fuzzy Linguistic Quantifiers. In: Applications of Soft Computing for the Web. (pp. 47-60) Singapore. Springer. 2018.
  9. Puritat K, Julrode P, Ariya P, Sangamuang S, Intawong K. Book Recommendation for Library Automation Use in School Libraries by Multi Features of Support Vector Machine. International Journal of Advanced Computer Science and Applications. 2021;12(4):190–196. Available from: https://dx.doi.org/10.14569/IJACSA.2021.0120426
  10. Mounika A, Saraswathi S. Design of Book Recommendation System Using Sentiment Analysis. In: Evolutionary Computing and Mobile Sustainable Networks, Lecture Notes on Data Engineering and Communications Technologies. (Vol. 53, pp. 95-101) Singapore. Springer . 2021.
  11. Sarma D, Mittra T, Shahadat M. Personalized Book Recommendation System using Machine Learning Algorithm. International Journal of Advanced Computer Science and Applications. 2021;12(1):212–219. Available from: https://dx.doi.org/10.14569/IJACSA.2021.0120126
  12. Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering. 2005;17(6):734–749. Available from: https://doi.org/10.1109/TKDE.2005.99
  13. Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10). (pp. 2200-2204) European Language Resources Association (ELRA). 2010.
  14. Mahadevaswamy UB, Swathi P. Sentiment Analysis using Bidirectional LSTM Network. Procedia Computer Science. 2023;218:45–56. Available from: https://doi.org/10.1016/j.procs.2022.12.400
  15. Anwar K, Siddiqui J, Sohail SS. Machine learning-based book recommender system: a survey and new perspectives. International Journal of Intelligent Information and Database Systems. 2020;13(2-4):231–248. Available from: https://doi.org/10.1504/IJIIDS.2020.109457
  16. Wang D, Liang Y, Xu D, Feng X, Guan R. A content-based recommender system for computer science publications. Knowledge-Based Systems. 2018;157:1–9. Available from: https://doi.org/10.1016/j.knosys.2018.05.001
  17. Sasikala P, Sheela LMI. Sentiment analysis and prediction of online reviews with empty ratings. International Journal of Applied Engineering Research. 2018;13(14):11525–11531. Available from: https://www.ripublication.com/ijaer18/ijaerv13n14_25.pdf
  18. Wayesa F, Leranso M, Asefa G, Kedir A. Pattern-based hybrid book recommendation system using semantic relationships. Scientific Reports. 2023;13(1):1–12. Available from: https://doi.org/10.1038/s41598-023-30987-0


© 2024 Kumar & Chawla.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.