• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 30, Pages: 2350-2357

Original Article

Hydrogel Based Skin Contacting Medical Devices and Cytotoxicity: An Overview of Challenges and Recommendations from a Regulatory Perspective

Received Date:18 November 2022, Accepted Date:27 July 2023, Published Date:12 August 2023


Background/Objectives : Hydrogels are highly water-swollen polymeric materials with diverse properties and excellent biocompatibility. Despite their immense potential, hydrogel-based medical devices often exhibit a cytotoxic response, which raises major concerns from a regulatory perspective. The focus of this review is on possible reasons that cause such cytotoxicity and furthermore offers recommendations from a regulatory point of view for a successful biocompatibility assessment of medical devices. Methods: Hydrogel based medical devices intended for clinical use should demonstrate their biocompatibility in a series of preclinical studies based on their type and duration of body contact, as defined in the ISO 10993-Part 1:2018 standard. As a seminal investigation in the biocompatibility assessment, the devices should be tested for cytotoxicity according to ISO 10993-Part 5:2009 using various methods including tests on extracts, direct and indirect contact methods. Findings: This review has summarized various factors that may lead to a cytotoxic response, including sterilization, change in pH, and medium absorption. In this regard, we proposed a stepwise strategy to assess the reason for such a cytotoxic response rather than justifying it with literature and in vivo study results. Novelty: The factors contributing to a positive cytotoxic response are of paramount importance in the field of hydrogel based medical devices. Understanding these factors is crucial for ensuring the safety and efficacy of such technologies. This review serves as a valuable resource in shedding light on these critical aspects from a regulatory perspective.

Keywords: Medical Device; Hydrogel; Biocompatibility; Cytotoxicity; Risk Assessment


  1. Muir VG, Burdick JA. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews. 2021;121(18):10908–10949. Available from: https://dx.doi.org/10.1021/acs.chemrev.0c00923
  2. Correa S, Grosskopf AK, Hernandez HL, Chan D, Yu AC, Stapleton LM, et al. Translational Applications of Hydrogels. Chemical Reviews. 2021;121(18):11385–11457. Available from: https://doi.org/10.1021/acs.chemrev.0c01177
  3. Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy. 2021;6(1):1–31. Available from: https://doi.org/10.1038/s41392-021-00830-x
  4. Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(4):e03719. Available from: https://doi.org/10.1016/j.heliyon.2020.e03719
  5. Øvrebø Ø, Perale G, Wojciechowski JP, Echalier C, Jeffers JRT, Stevens MM, et al. Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioengineering & Translational Medicine. 2022;7(2):1–21. Available from: https://doi.org/10.1002/btm2.10295
  6. Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels in the clinic. Bioengineering & Translational Medicine. 2020;5(2):1–12. Available from: https://doi.org/10.1002/btm2.10158
  7. Herrmann A, Haag R, Schedler U. Advanced Healthcare Materials. Hydrogels and Their Role in Biosensing Applications. 2021;10. Available from: https://doi.org/10.1002/adhm.202100062
  8. Zhou X, Rajeev A, Subramanian A, Li Y, Rossetti N, Natale G, et al. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomaterialia. 2022;139:296–306. Available from: https://doi.org/10.1016/j.actbio.2021.07.069
  9. Woolfson AD, Malcolm RK, Gorman SP, Mccullagh SD. Self-lubricating catheter materials. Biomaterials and Tissue Engineering in Urology. 2009;p. 191–207. Available from: https://doi.org/10.1533/9781845696375.2.191
  10. Jablonská E, Kubásek J, Vojtěch D, Ruml T, Lipov J. Test conditions can significantly affect the results of in vitro cytotoxicity testing of degradable metallic biomaterials. Scientific Reports. 2021;11(1). Available from: https://doi.org/10.1038/s41598-021-85019-6
  11. Pimton P, Ratphibun P, Tassaneesuwan N, Chiangnoon R, Uttayarat P. Cytotoxicity Evaluation of Hydrogel Sheet Dressings Fabricated by Gamma Irradiation: Extract and Semi-Direct Contact Tests. Trends in Sciences. 2022;19(12):4583. Available from: https://doi.org/10.48048/tis.2022.4583
  12. Kasai RD, Radhika D, Archana S, Shanavaz H, Koutavarapu R, Lee DY, et al. A review on hydrogels classification and recent developments in biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials. 2022;18:1. Available from: http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024
  13. Rogero SO, Malmonge SM, Lugão AB, Ikeda TI, Miyamaru L, Cruz ÁS. Biocompatibility Study of Polymeric Biomaterials. Artificial Organs. 2003;27(5):424–427. Available from: https://doi.org/10.1046/j.1525-1594.2003.07249.x
  14. Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Bialik-Wąs K, Sobczak-Kupiec A. In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. Journal of Polymer Research. 2017;24(10):24. Available from: https://doi.org/10.1007/s10965-017-1315-3
  15. Escudero-Castellanos A, Ocampo-García BE, Domínguez-García MV, Flores-Estrada J, Flores-Merino MV. Hydrogels based on poly(ethylene glycol) as scaffolds for tissue engineering application: biocompatibility assessment and effect of the sterilization process. Journal of Materials Science: Materials in Medicine. 2016;27(12). Available from: https://doi.org/10.1007/s10856-016-5793-3
  16. Galante R, Ghisleni D, Paradiso P, Alves VD, Pinto TJA, Colaço R, et al. Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Materials Science and Engineering: C. 2017;78:389–397. Available from: http://dx.doi.org/10.1016/j.msec.2017.04.073
  17. Capella V, Rivero RE, Liaudat AC, Ibarra LE, Roma DA, Alustiza F, et al. Cytotoxicity and bioadhesive properties of poly-N-isopropylacrylamide hydrogel. Heliyon. 2019;5(4):e01474. Available from: https://doi.org/10.1016/j.heliyon.2019.e01474


© 2023 Pradeepa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.