• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 32, Pages: 2540-2547

Original Article

Identification of Predictors for Utilization of Artificial Intelligence Powered COVID -19 Chatbot for Self-Screening and Health Counselling

Received Date:28 April 2023, Accepted Date:16 July 2023, Published Date:28 August 2023


Background: Advent of COVID-19 has led to many challenges to the healthcare system. To deal with the burdening of healthcare and for assuaging the selfscreening process ‘Dr. Chhaya’- AI (Artificial Intelligence) based chatbot was developed and implemented by a health research institute. Objectives: First, to capture the perception of the PG (Post-Graduate) students enrolled in public health programmes towards the ‘Dr. Chhaya’ chatbot. Secondly, to identify and analyze the predictors for the future use of the chatbot. We proposed a hypothesis that students with different levels of technological proficiency have different perceptions towards AI-based health chatbot. Methods: A cross-sectional study on 219 PG students was conducted, using a pre-tested questionnaire. The tool consisted of 2 parts, namely, (i) demographics (ii) experience and perception towards the chatbot. Twelve critical variables were identified which were grouped into 3 domains, namely, ‘utility factors’, ‘sentimental factors’, and ‘technical appropriateness’. Responses regarding each variable were recorded using an 11-point scale. Statistical analysis of responses was done using IBM-SPSS (ver. 22). Findings: The perception of participants towards AI-based chatbot was found to be positive (overall mean of scores=7.1). Regression analysis revealed that ‘utility factor’ (b =0.45, p value<0.001) and ‘sentimental factor’ (b =0.35, p value=0.033) are predictors of future use of the chatbots by participants. Analysis revealed that the proposed hypothesis is found true (at 95% confidence). Novelty: The present paper offers an interdisciplinary approach and provides insights for developing more efficient self-health screening chatbots. The study informs about the factors that augment the AI powered chatbot use as not discussed much in past studies. Findings suggest, policymakers could implement chatbot utilization policy for urban areas, to promote the self-screening process by masses to reduce burden on the healthcare system.

Keywords: Artificial Intelligence; COVID19; Perception; Chatbots; Health screening


  1. Afzal F, Siddiqui R, Khan MR, Afzal M, Usmani N. COVID-19- a public health emergency: what do we know? A cross-sectional study on community awareness level towards COVID-19 in Uttar Pradesh, India. International Journal Of Community Medicine And Public Health. 2020;7(11):4562. Available from: https://dx.doi.org/10.18203/2394-6040.ijcmph20204762
  2. Sahoo S, Padhy SK, Ipsita J, Mehra A, Grover S. Demystifying the myths about COVID-19 infection and its societal importance. Asian Journal of Psychiatry. 2020;54:102244. Available from: https://doi.org/10.1016/j.ajp.2020.102244
  3. Ouassou H, Kharchoufa L, Bouhrim M, Daoudi NE, Imtara H, Bencheikh N, et al. The Pathogenesis of Coronavirus Disease 2019 (COVID-19): Evaluation and Prevention. Journal of Immunology Research. 2020;2020:1–7. Available from: https://doi.org/10.1155/2020/1357983
  4. Klompas M. Coronavirus Disease 2019 (COVID-19): Protecting Hospitals From the Invisible. Annals of Internal Medicine. 2020;172(9):619–620. Available from: https://doi.org/10.7326/M20-0751
  5. Zhang P, Wang C, Kumar N, Jiang C, Lu Q, Choo KKRK, et al. Artificial Intelligence Technologies for COVID-19-Like Epidemics: Methods and Challenges. IEEE Network. 2021;35(3):27–33. Available from: https://doi.org/10.1109/MNET.011.2000741
  6. Amiri P, Karahanna E. Chatbot use cases in the Covid-19 public health response. Journal of the American Medical Informatics Association. 2022;29(5):1000–1010. Available from: https://doi.org/10.1093/jamia/ocac014
  7. Wang L, Zhang Y, Wang D, Tong X, Liu T, Zhang S, et al. Artificial Intelligence for COVID-19: A Systematic Review. Frontiers in Medicine. 2021;8(1):1–15. Available from: https://doi.org/10.3389/fmed.2021.704256
  8. Kaywan P, Ahmed K, Ibaida A, Miao Y, Gu B. Early detection of depression using a conversational AI bot: A non-clinical trial. PLOS ONE. 2023;18(2):e0279743. Available from: https://doi.org/10.1371/journal.pone.0279743
  9. Bharti U, Bajaj D, Batra H, Lalit S, Lalit S, Gangwani A. Medbot: Conversational Artificial Intelligence Powered Chatbot for Delivering Tele-Health after COVID-19. 2020 5th International Conference on Communication and Electronics Systems (ICCES). 2020;870. Available from: https://doi.org/10.1109/ICCES48766.2020.9137944
  10. Rodsawang C, Thongkliang P, Intawong T, Sonong A, Thitiwatthana Y, Chottanapund S. Designing a Competent Chatbot to Counter the COVID-19 Pandemic and Empower Risk Communication in an Emergency Response System. Outbreak, Surveillance, Investigation & Response (OSIR) Journal. 2020;13(2):71–77. Available from: http://www.osirjournal.net/index.php/osir/article/view/193
  11. Judson TJ, Odisho AY, Young JJ, Bigazzi O, Steuer D, Gonzales R, et al. Implementation of a digital chatbot to screen health system employees during the COVID-19 pandemic. Journal of the American Medical Informatics Association. 2020;27(9):1450–1455. Available from: https://doi.org/10.1093/jamia/ocaa130
  12. Altay S, Hacquin ASS, Chevallier C, Mercier H. Information delivered by a chatbot has a positive impact on COVID-19 vaccines attitudes and intentions. Journal of Experimental Psychology: Applied. 2021;29(1):52–62. Available from: https://doi.org/10.1037/xap0000400
  13. Amer E, Hazem A, Farouk O, Louca A, Mohamed Y, Ashraf M. A Proposed Chatbot Framework for COVID-19. 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). 2021;p. 263–268. Available from: https://doi.org/10.1109/MIUCC52538.2021.9447652
  14. Martin A, Nateqi J, Gruarin S, Munsch N, Abdarahmane I, Zobel M, et al. An artificial intelligence-based first-line defence against COVID-19: digitally screening citizens for risks via a chatbot. Scientific Reports. 2020;10(1):1–7. Available from: https://doi.org/10.1038/s41598-020-75912-x
  15. Battineni G, Chintalapudi N, Amenta F. AI Chatbot Design during an Epidemic like the Novel Coronavirus. Healthcare. 2020;8(2):154. Available from: http://dx.doi.org/10.3390/healthcare8020154
  16. Miner AS, Laranjo L, Kocaballi AB. Chatbots in the fight against the COVID-19 pandemic. Digital Medicine. 2020;3(1):1–4. Available from: https://doi.org/10.1038/s41746-020-0280-0
  17. Afzal F, Ahmad AA, Ali QA, Joshi S, Mehra S. Fulfilling the need of hour: systematic review of challenges associated with electronic medical record (EMR) implementation-SBEA model. Vidyabharati International Interdisciplinary Research Journal. 2021;13(8):649–662. Available from: https://www.researchgate.net/publication/356162488/
  18. Babel A, Taneja R, Malvestiti FM, Monaco A, Donde S. Artificial Intelligence Solutions to Increase Medication Adherence in Patients With Non-communicable Diseases. Frontiers in Digital Health. 2021;3:1–9. Available from: https://doi.org/10.3389/fdgth.2021.669869
  19. Jamshidi M, Lalbakhsh A, Talla J, Peroutka Z, Hadjilooei F, Lalbakhsh P, et al. Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment. IEEE Access. 2020;8:109581–109595. Available from: https://doi.org/10.1109/ACCESS.2020.3001973
  20. Parviainen J, Rantala J. Chatbot breakthrough in the 2020s? An ethical reflection on the trend of automated consultations in health care. Medicine, Health Care and Philosophy. 2022;25(1):61–71. Available from: https://doi.org/10.1007/s11019-021-10049-w
  21. Riveiro M, Thill S. On the role of end user expectations in creating explanations of AI systems. Artificial Intelligence. 2021;298:1–27. Available from: https://doi.org/10.1016/j.artint.2021.103507
  22. Palanica A, Flaschner P, Thommandram A, Li M, Fossat Y. Physicians’ Perceptions of Chatbots in Health Care: Cross-Sectional Web-Based Survey. Journal of Medical Internet Research. 2019;21(4):e12887. Available from: https://doi.org/10.2196/12887
  23. Sweeney C, Potts C, Ennis E, Bond R, Mulvenna MD, O’neill S, et al. Can Chatbots Help Support a Person’s Mental Health? Perceptions and Views from Mental Healthcare Professionals and Experts. ACM Transactions on Computing for Healthcare. 2021;2(3):1–15. Available from: https://doi.org/10.1145/3453175
  24. Abd-Alrazaq AA, Alajlani M, Ali N, Denecke K, Bewick BM, Househ M. Perceptions and Opinions of Patients About Mental Health Chatbots: Scoping Review. Journal of Medical Internet Research. 2021;23(1):e17828. Available from: https://doi.org/10.2196/17828
  25. Mangla D, Aggarwal R, Maurya M. Measuring perception towards AI-based chatbots in Insurance Sector. 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE). 2023;p. 890–895. Available from: https://doi.org/10.1109/IITCEE57236.2023.10091024


© 2023 Bhola et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.