• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 6, Pages: 391-400

Original Article

Improved Differential Evolution with Stacked Auto Encoder for EEG Motor Imagery Classification

Received Date:28 October 2022, Accepted Date:19 January 2023, Published Date:11 February 2023


Objectives: To develop an improved version of Differential Evolution (DE) algorithm to overcome the complexity in extracting the features from the Electroencephalogram (EEG) based Brain-Computer Interfaces (BCI) systems; To develop a Stacked Auto Encoder (SAE) for classifying motor imagery signals into left, right, feet and tongue movements, respectively. Methods: Improved Differential Evolution Optimization Algorithm (IDEOA) is proposed for the selection of features which is extracted by the hybrid CSP-CNN feature extraction model. Extracted features will undergo the classification process by using SAE. Findings: The proposed IDEOA has an accuracy of 97.34% compared to the existing Sinc-based convolutional neural networks that obtained 75.39% and TSGL-EEG-Net of 81.34%. Novelty: The proposed IDEOA improves the mutation strategy results in improved convergence effect. Keywords: BrainComputer Interfaces; Convolutional Neural Networks; Electroencephalogram; Improved Differential Evolution Optimization Algorithm; Stacked Auto Encoder


  1. Rahman MKM, Joadder MAM. A space-frequency localized approach of spatial filtering for motor imagery classification. Health Information Science and Systems. 2020;8(1):15. Available from: https://doi.org/10.1007/s13755-020-00106-8
  2. Molla MKI, Shiam AA, Islam MR, Tanaka T. Discriminative Feature Selection-Based Motor Imagery Classification Using EEG Signal. IEEE Access. 2020;8:98255–98265. Available from: https://doi.org/10.1109/ACCESS.2020.2996685
  3. Shovon TH, Nazi ZA, Dash S, Hossain MF. Classification of Motor Imagery EEG Signals with multi-input Convolutional Neural Network by augmenting STFT. 2019 5th International Conference on Advances in Electrical Engineering (ICAEE). 2019;p. 398–403. Available from: https://doi.org/10.1109/ICAEE48663.2019.8975578
  4. Tang R, Li Z, Xie X. Motor imagery EEG signal classification using upper triangle filter bank auto-encode method. Biomedical Signal Processing and Control. 2021;68:102608. Available from: https://doi.org/10.1016/j.bspc.2021.102608
  5. Attallah O, Abougharbia J, Tamazin M, Nasser AA. A BCI System Based on Motor Imagery for Assisting People with Motor Deficiencies in the Limbs. Brain Sciences. 2020;10(11):864. Available from: https://doi.org/10.3390/brainsci10110864
  6. Dong E, Zhou K, Tong J, Du S. A novel hybrid kernel function relevance vector machine for multi-task motor imagery EEG classification. Biomedical Signal Processing and Control. 2020;60:101991. Available from: https://doi.org/10.1016/j.bspc.2020.101991
  7. Xu L, Xu M, Jung TP, Ming D. Review of brain encoding and decoding mechanisms for EEG-based brain–computer interface. Cognitive Neurodynamics. 2021;15(4):569–584. Available from: https://doi.org/10.1007/s11571-021-09676-z
  8. Xu S, Zhu L, Kong W, Peng Y, Hu H, Cao J. A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network. Cognitive Neurodynamics. 2022;16(2):379–389. Available from: https://doi.org/10.1007/s11571-021-09721-x
  9. Huang Z, Qiu Y, Sun W. Recognition of motor imagery EEG patterns based on common feature analysis. Brain-Computer Interfaces. 2021;8(4):128–136. Available from: https://doi.org/10.1080/2326263X.2020.1783170
  10. Xie J, Zhang J, Sun J, Ma Z, Qin L, Li G, et al. A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2022;30:2126–2136. Available from: https://doi.org/10.1109/TNSRE.2022.3194600
  11. Musallam YK, Alfassam NI, Muhammad G, Amin SU, Alsulaiman M, Abdul W, et al. Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomedical Signal Processing and Control. 2021;69:102826. Available from: https://doi.org/10.1016/J.BSPC.2021.102826
  12. Ghumman MK, Singh S, Singh N, Jindal B. Optimization of parameters for improving the performance of EEG-based BCI system. Journal of Reliable Intelligent Environments. 2021;7(2):145–156. Available from: https://doi.org/10.1007/s40860-020-00117-y
  13. Deng X, Zhang B, Yu N, Liu K, Sun K. Advanced TSGL-EEGNet for Motor Imagery EEG-Based Brain-Computer Interfaces. IEEE Access. 2021;9:25118–25130. Available from: https://doi.org/10.1109/ACCESS.2021.3056088
  14. Bria A, Marrocco C, Tortorella F. Sinc-Based Convolutional Neural Networks for EEG-BCI-Based Motor Imagery Classification. In: Pattern Recognition. ICPR International Workshops and Challenges. (Vol. 1, pp. 526-535) Springer International Publishing. 2021.
  15. Jayashekar V, Pandian R. Hybrid Feature Extraction for EEG Motor Imagery Classification Using MultiClass SVM. International Journal of Intelligent Engineering and Systems. 2022;15(4):20–30. Available from: https://doi.org/10.22266/ijies2022.0831.03


© 2023 Vishwesh & Raviraj. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.