• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 46, Pages: 4339-4348

Original Article

In-Silico and Pharmacokinetic Studies of Bioactive Constituents from Green Marine Macro Algae Valoniopsis pachynema Against Psoriasis

Received Date:02 August 2023, Accepted Date:30 October 2023, Published Date:13 December 2023


Objectives : To validate the pharmacokinetic effects of the bioactive constituents present in green marine algae Valoniopsis pachynema for treating Psoriasis by in silco methods. Methods: The green marine macroalga was collected from the coastal areas of Ramanathapuram, Tamil Nadu and it was confirmed as Valoniopsis pachynema by the CSIR- Central Marine Algal Research Station, Ramanathapuram. The GC-MS analysis of the algal extract revealed the presence of 7 different functional compounds and these ligands molecules were used for molecular docking studies with TNF-α, which is majorly involved in causing Psoriasis. The ADME Predictions of 7 compounds were computed by SwissADME and PreADMET tools. The physico-chemical properties and drug-likeness predictions of the compounds 1–7 were analysed by Molinspiration. The Molecular Docking scores and the residual amino acid interactions of 7 compounds against crystal structure of TNF-α (2AZ5) binding domain were analysed by Autodock Vina. Findings : The potential functional compounds present in the algal extract were found to be Cycloartenol (CAL), Eicosane (ESN), Phytol (PTL), Cis-13 Eicosenoic acid (CEA), Octadecanoic acid (ODA), Squalene (SQL) and Neophytadiene (NPN). The pharmacokinetic properties and docking studies of all 7 different ligands revealed Cycloartenol as the effective ligand having inhibitor constant 3.05µM and binding energy of -7.52 kcal/mol against TNF-α and it was found to interact with the amino acids ILE 136 and PRO 139 present in the active site domain of the protein. According to the in silico studies, the active component (Cycloartenol (CAL) in Valoniopsis pachynema reduces the amount of tumour necrosis factor which is produced in chronic skin inflammation. Thus, the seaweed metabolites were found to be the promising candidates as TNF-inhibitors for the treatment of Psoriasis. Novelty: The pharmacological effect of the bioactive compounds present in marine macroalgae V. pachynema against skin inflammatory illnesses, particularly Psoriasis, has not been investigated yet.

Keywords: Psoriasis, Chronic skin inflammation, In silico, Valoniopsis pachynema, Bioactive constituents, TNF­ α


  1. Eder L, Widdifield J, Rosen CF, Cook R, Lee KA, Alhusayen R, et al. Trends in the Prevalence and Incidence of Psoriasis and Psoriatic Arthritis in Ontario, Canada: A Population‐Based Study. Arthritis Care & Research. 2019;71(8):1084–1091. Available from: https://acrjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/acr.23743
  2. Reis SE, Andrade RGC, Accardo CM, Maia LF, Oliveira LFC, Nader HB, et al. Influence of sulfated polysaccharides from Ulva lactuca L. upon Xa and IIa coagulation factors and on venous blood clot formation. Algal Research. 2020;45:101750. Available from: https://doi.org/10.1016/j.algal.2019.101750
  3. Zheng LX, Chen XQ, Cheong KL. Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential. International Journal of Biological Macromolecules. 2020;151:344–354. Available from: https://doi.org/10.1016/j.ijbiomac.2020.02.168
  4. Chen X, Fu X, Huang L, Xu J, Gao X. Agar oligosaccharides: A review of preparation, structures, bioactivities and application. Carbohydrate Polymers. 2021;265:118076. Available from: https://doi.org/10.1016/j.carbpol.2021.118076
  5. Jami F, Taheri A. Antioxidant properties of Sargassum tenerrimum brown algae and Valoniopsis pachynema green algae from Chabahar coasts. Journal of Utilization and Cultivation of Aquatics. 2023;12(1):127–141. Available from: http://dx.doi.org/10.22069/japu.2022.20291.1671
  6. Erniati E, Erlangga E, Andika Y, Muliani M. Seaweed diversity and community structure on the west coast of Aceh, Indonesia. Biodiversitas Journal of Biological Diversity. 2023;24(4). Available from: https://doi.org/10.13057/biodiv/d240431
  7. Johnston KG, Abomohra A, French CE, Zaky AS. Recent Advances in Seaweed Biorefineries and Assessment of Their Potential for Carbon Capture and Storage. Sustainability . 2023;15:1–33. Available from: http://dx.doi.org/10.20944/preprints202307.1988.v1
  8. JSA, Pérez-Jiménez J. Antioxidant capacity of seaweeds: In vitro and in vivo assessment. Marine Phenolic Compounds. 2023;p. 299–341. Available from: https://doi.org/10.1016/B978-0-12-823589-8.00006-6
  9. Pereira L. Algae as a source of bioactive ingredients for the formulation of functional foods and nutraceuticals. Functional Ingredients from Algae for Foods and Nutraceuticals. 2023;p. 3–114. Available from: https://doi.org/10.1016/B978-0-323-98819-3.00016-X
  10. Flórez-Fernández N, RR, EMB, Torres MD, Falqué E. Algal proteins, peptides and amino acids. Functional Ingredients from Algae for Foods and Nutraceuticals. 2023;p. 247–334. Available from: https://doi.org/10.1016/B978-0-323-98819-3.00001-8
  11. Chen X, Li H, Tian L, Li Q, Luo J, Zhang Y. Analysis of the Physicochemical Properties of Acaricides Based on Lipinski's Rule of Five. Journal of Computational Biology. 2020;27(9):1397–1406. Available from: https://doi.org/10.1089/cmb.2019.0323
  12. Maliehe TS, Tsilo PH, Shandu JS. Computational Evaluation of ADMET Properties and Bioactive Score of Compounds from Encephalartos ferox. Pharmacognosy Journal. 2020;12(6):1357–1362. Available from: https://www.phcogj.com/article/1253
  13. Thirumalaisamy R, Ameen F, Subramanian A, Selvankumar T, Alwakeel SS, Govarthanan M. In-Vitro and In-Silico Anti-inflammatory Activity of Lupeol Isolated from Crateva adansonii and Its Hidden Molecular Mechanism. International Journal of Peptide Research and Therapeutics. 2020;26(4):2179–2189. Available from: https://doi.org/10.1007/s10989-019-10006-5
  14. Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Marine Drugs. 2020;18(3):1–17. Available from: https://doi.org/10.3390/md18030147
  15. Ripol A, Cardoso C, Afonso C, Varela J, Quental-Ferreira H, Pousão-Ferreira P, et al. Composition, anti-inflammatory activity, and bioaccessibility of green seaweeds from fish pond aquaculture. Natural Products Communication. 2018;13(5):603–608. Available from: https://journals.sagepub.com/doi/pdf/10.1177/1934578X1801300521#:~:text=Lipid%20content%20was%20very%20low,prolifera%20and%20C.
  16. Kingslin A, Ravikumar P. Green synthesis, characterization and applications of silver nanoparticles of Valoniopsis pachynema (G. Martens) Borgesen. International Journal for Research in Applied Science and Engineering Technology. 2018;6(II):649–664. Available from: https://www.ijraset.com/fileserve.php?FID=13603
  17. Krishnan B, Rathi MA, Nirmaladevi N. Free radical scavenging activity of methanolic extract of marine red algae Actinotrichia fragilis. Asian Journal of Pharmacy and Pharmacology. 2019;5(5):876–883. Available from: https://ajpp.in/uploaded/p355.pdf
  18. Park SK, Kang JY, Kim JM, Kim HJM, Heo HJ. Ecklonia cava Attenuates PM2.5-Induced Cognitive Decline through Mitochondrial Activation and Anti-Inflammatory Effect. Marine Drugs. 2021;19(3):1–20. Available from: https://doi.org/10.3390/md19030131
  19. Liu R, Qin S, Li W. Phycocyanin: Anti-inflammatory effect and mechanism. Biomedicine & Pharmacotherapy. 2022;153:1–10. Available from: https://doi.org/10.1016/j.biopha.2022.113362
  20. Kasemnitichok Y, Chaijaroenkul W, Na-Bangchan K. Herbal medicine for psoriasis and their molecular targets: A systematic review. African Journal of Pharmacy and Pharmacology. 2022;16(3):27–52. Available from: https://doi.org/10.5897/AJPP2022.5292
  21. Priyadarsini SS, Vani PB, Kumar PR. A Comparative Review on Conventional and Traditional medicine in the Treatment of Psoriasis. Research Journal of Pharmacy and Technology. 2020;13(11):5642–5646. Available from: http://dx.doi.org/10.5958/0974-360X.2020.00983.X
  22. Shikov AN, Flisyuk EV, Obluchinskaya ED, Pozharitskaya ON. Pharmacokinetics of Marine-Derived Drugs. Marine Drugs. 2020;18(11):1–35. Available from: https://doi.org/10.3390/md18110557
  23. Ayipo YO, Alananzeh WA, Ahmad I, Patel H, Mordi MN. Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. Journal of Biomolecular Structure and Dynamics. 2023;41(13):6219–6235. Available from: https://doi.org/10.1080/07391102.2022.2104376
  24. Premarathna AD, Ranahewa TH, Wijesekera SK, Harishchandra DL, Karunathilake KJK, Waduge RN, et al. Preliminary screening of the aqueous extracts of twenty-three different seaweed species in Sri Lanka with in-vitro and in-vivo assays. Heliyon. 2020;6(6):1–16. Available from: https://doi.org/10.1016/j.heliyon.2020.e03918
  25. Giriwono PE, Iskandriati D, Tan CP, Andarwulan N. Sargassum seaweed as a source of anti-inflammatory substances and the potential insight of the tropical species: a review. Marine Drugs. 2019;17(10):1–35. Available from: https://doi.org/10.3390/md17100590


© 2023 Bhuvaneshwari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.