• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 17, Pages: 829-838

Original Article

Integrating Neural Network for Pest Detection in Controlled Environment Vertical Farm

Received Date:24 February 2022, Accepted Date:16 March 2022, Published Date:19 May 2022


Background: An integrated system for creating and maintaining controlled environment ideal for vertical farming prototype is demonstrated. The requirement of optimal artificial light for different growth stages of tomato and chilli plants is studied in detail and CNN model-based method for detection and classification of Leaf disease is also developed. Methods: The artificial environment ensuring adequate artificial lighting, moisture, and minerals was create by implanting various sensors and actuators to the plant beds and connected in network through a cloud based remote server. A CMOS image sensor module was used to monitor the various stages of plant growth. Findings: The duration and intensity requirement for germination, vegetation and flowering of both tomato and chilli plants are relatively lesser with artificial light condition than with sunlight. At the end of fifth epoch the developed convolution neural network model for detection and classification of leaf disease produced training and validation accuracies of 84.8% and 67.2%, respectively. Novelty: For different growth stages of tomato and chilli plants in north eastern India, the requirement of optimal artificial light is studied by exposing them to different light intensities. The study was conducted during summer (May-June) when the average sun exposure in eastern India was ~130- 190 hours. The captured images and data generated were used to monitor the status of the crops and identifying diseases with the application of Deep Learning models. Convolutional Neural Network (CNN) model-based method for detection and classification of leaf disease is presented.

Keywords: Convolution Neural Network; Vertical Farming; Artificial Light; Pest Detection; Light Emitting Diode


  1. Ayaz M, Ammad-Uddin M, Sharif Z, Mansour A, Aggoune EHM. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access. 2019;7:129551–129583. Available from: https://dx.doi.org/10.1109/access.2019.2932609
  2. Katiyar S, Farhana A. Smart Agriculture: The Future of Agriculture using AI and IoT. Journal of Computer Science. 2021;17(10):984–999. Available from: https://dx.doi.org/10.3844/jcssp.2021.984.999
  3. Farooq MS, Riaz S, Abid A, Abid K, Naeem MA. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access. 2019;7:156237–156271. Available from: https://dx.doi.org/10.1109/access.2019.2949703
  4. Gour MS, Reddy V, Vishuvardhan, Ram VT. IoT based Farming Techniques in Indoor Environment: A Brief Survey. 2020 5th International Conference on Communication and Electronics Systems (ICCES). 2020;p. 790–795. doi: 10.1109/ICCES48766.2020.9137950
  5. Ruscio F, Paoletti P, Thomas J, Myers P, Fichera S. Low-cost monitoring system for hydroponic urbanvertical farms. International Journal of Agricultural and Biological Engineering. 2019;13:267–271. doi: 10.5281/zenodo.3566357
  6. Liwal KK, Vohra M, Sheikh H, Al-Khatib O, Aziz NA, Copiaco C. Implementation of a sustainable and scalable vertical micro-farm. Journal of Applied Horticulture. 2020;22(1):3–7. Available from: https://dx.doi.org/10.37855/jah.2020.v22i01.01
  7. Ma Y, Xu A, ZMC. Effects of light emitting diode lights on plant growth, development and traits a meta-analysis. Horticultural Plant Journal. 2021;7(6):552–564. Available from: https://doi.org/10.1016/j.hpj.2020.05.007
  8. Gerrewey TV, Boon N, Geelen D. Vertical Farming: The Only Way Is Up? Agronomy. 2021;12(1):2. Available from: https://dx.doi.org/10.3390/agronomy12010002
  9. Ebi KL, Anderson CL, Hess JJ, Kim SH, Loladze I, Neumann RB, et al. Nutritional quality of crops in a high CO2 world: an agenda for research and technology development. Environmental Research Letters. 2021;16(6):064045. Available from: https://dx.doi.org/10.1088/1748-9326/abfcfa
  10. Bari BS, Islam MN, Rashid M, Hasan MJ, Razman MAM, Musa RM, et al. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. Peer Journal of Computer Science. 2021;7:e432. Available from: https://dx.doi.org/10.7717/peerj-cs.432
  11. Gaetani R, Lacotte V, Dufour V, Clavel A, Duport G, Gaget K, et al. Sustainable laser-based technology for insect pest control. Scientific Reports. 2021;11(1):11068. Available from: https://dx.doi.org/10.1038/s41598-021-90782-7
  12. Ngugi LC, Abelwahab M, Abo-Zahhad M. Recent advances in image processing techniques for automated leaf pest and disease recognition – A review. Information Processing in Agriculture. 2021;8:27–51. Available from: https://dx.doi.org/10.1016/j.inpa.2020.04.004
  13. Kasinathan T, Singaraju D, Uyyala SR. Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture. 2021;8(3):446–457. Available from: https://dx.doi.org/10.1016/j.inpa.2020.09.006
  14. Zhou G, Zhang W, Chen A, He M, Ma X. Rapid Detection of Rice Disease Based on FCM-KM and Faster R-CNN Fusion. IEEE Access. 2019;7:143190–143206. Available from: https://dx.doi.org/10.1109/access.2019.2943454
  15. Wang XF, Wang Z, Zhang SW. Segmenting Crop Disease Leaf Image by Modified Fully-Convolutional Networks. Intelligent Computing Theories and Application. 2019;11643:646–652. Available from: https ://doi.org/10.1007/978-3-030-26763 -6_62
  16. Wang Q, Qi F, Sun M, Qu J, Xue J. Identification of Tomato Disease Types and Detection of Infected Areas Based on Deep Convolutional Neural Networks and Object Detection Techniques. Computational Intelligence and Neuroscience. 2019;2019:1–15. Available from: https://dx.doi.org/10.1155/2019/9142753
  17. Liu B, Ding Z, Tian L, He D, Li S, Wang H. Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks. Frontiers in Plant Science. 2020;11:1082. Available from: https://dx.doi.org/10.3389/fpls.2020.01082
  18. Mónica Y, Moreno-Revelo L, Guachi-Guachi J, Gómez-Mendoza JB, Revelo-Fuelagán DH, Peluffo-Ordóñez. Enhanced Convolutional-Neural-Network Architecture for Crop Classification. 2021;11:4292. Available from: https://dx.doi.org/10.3390/app11094292
  19. Dhaka VS, Meena SV, Rani G, Sinwar D, Kavita K, Ijaz MF, et al. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases. Sensors. 2021;21(14):4749. Available from: https://dx.doi.org/10.3390/s21144749
  20. Gao J, French AP, Pound MP, He Y, Pridmore TP, Pieters JG. Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields. Plant Methods. 2020;16(1):29. Available from: https://dx.doi.org/10.1186/s13007-020-00570-z
  21. Wang Q, Qi F, Sun M, Qu J, Xue J. Identification of Tomato Disease Types and Detection of Infected Areas Based on Deep Convolutional Neural Networks and Object Detection Techniques. Computational Intelligence and Neuroscience. 2019;2019:1–15. Available from: https://dx.doi.org/10.1155/2019/9142753
  22. Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, Altenbach SB, et al. LED Lighting – Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Frontiers in Plant Science. 2018;9. Available from: https://dx.doi.org/10.3389/fpls.2018.00605
  23. Moreno-Revelo MY, Guachi-Guachi L, Gómez-Mendoza JB, Revelo-Fuelagán J, Peluffo-Ordóñez DH. Enhanced Convolutional-Neural-Network Architecture for Crop Classification. Applied Sciences. 2021;11(9):4292. Available from: https://dx.doi.org/10.3390/app11094292


© 2022 Chakraborty et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.