• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 44, Pages: 2432-2440

Original Article

Intellectual Data Aggregation Using Independent Cluster based Medicaid Method for Network Functionality Fabrication

Received Date:27 July 2022, Accepted Date:26 October 2022, Published Date:02 December 2022


Objectives: Network functionality-based tracking is difficult for the fabrication processing under the various environment condition. In order to achieve the efficient result Intellectual data cluster-based Medicaid aggregation method applied for the network functionality analysis of the attack on network entities aggregate the fabrication process for balancing the network to normal flow. Methods: The proposed Independent Cluster based Medicaid Intellectual Data Aggregation (ICAMA) is compared with the K-means and GSVM, DBSCAN algorithm for classification of the attack entities to understand the response and reinforcement of the network functionality against the interconnection nodes by using energy and weighted aggregation, accuracy metrics on the CIC-IDS 2019 dataset. Findings: The Experiment studies provide the 15.23% lower energy consumption for interconnection of nodes comparing with the DBSCAN and 17.18% against the K-means algorithms. The network functional fabrication progress of proposed method has the weighted aggregation15.07%,8.32%, 6.41%, 5.12%, 5.52%, 8.08% and 2.21% against the given K-means, DBSCAN, GSVM, SOM, PCA, ocSVM and ICA methods and also improves accuracy to 11.07% compared with the GSVM method. ICAMA applies the intellectual functionality based on the distribution of entities in the network as a cluster or a single fabrication process. Novelty: In order to restore the regular network progress, ICAMA continuously runs the dynamic collection of network analysis by employing intellectual functional support to identify various types of network anomalies.

Keywords: Clustering; Data aggregation; Energy consumption; Fabrication; Network attacks


  1. Abbas A, Khan MA, Latif S, Ajaz MM, Shah AA, Ahmad J. A New Ensemble-Based Intrusion Detection System for Internet of Things. Arabian Journal for Science and Engineering. 2022;47(2):1805–1819. Available from: https://doi.org/10.1007/s13369-021-06086-5
  2. Li Q, Zhu L, Li B, Luo J, Liu D, Chen M. Small target detection algorithm based on YOLOv4. 2022 International Seminar on Computer Science and Engineering Technology (SCSET). 2022;p. 76. Available from: https://doi:10.1109/SCSET55041.2022.00026
  3. Portela FG, Mendoza FA, Benavides LC. Evaluation of the performance of supervised and unsupervised Machine learning techniques for intrusion detection. 2019 IEEE International Conference on Applied Science and Advanced Technology (iCASAT). 2019;p. 1–8. Available from: https://doi:10.1109/iCASAT48251.2019.9069538
  4. Hu T, Wang H, Yin W. Multi-label news classification algorithm based on deep two-way classifier chain. Journal of Zhejiang University: Engineering Edition. 2019;53(11).
  5. Dash L, Pattanayak BK, Mishra SK, Sahoo KS, Jhanjhi NZ, Baz M, et al. A Data Aggregation Approach Exploiting Spatial and Temporal Correlation among Sensor Data in Wireless Sensor Networks. Electronics. 2022;11(7):989. Available from: https://doi.org/10.3390/electronics11070989
  6. Wu Z, Chu W. Sampling Strategy Analysis of Machine Learning Models for Energy Consumption Prediction. IEEE 9th International Conference on Smart Energy Grid Engineering (SEGE). 2021;95349:87. Available from: https://doi:10.1109/SEGE52446.2021.9534987
  7. Ali I, Khan E, Sabir S. Privacy-preserving data aggregation in resource-constrained sensor nodes in Internet of Things: A review. Future Computing and Informatics Journal. 2018;3(1):41–50. Available from: https://doi.org/10.1016/j.fcij.2017.11.004
  8. Yadav S, Yadav RS. Redundancy Elimination During Data Aggregation in Wireless Sensor Networks for IoT Systems. Lecture Notes in Electrical Engineering. 2019;p. 195–205. Available from: https://doi.org/10.1007/978-981-13-2685-1_20
  9. Forbush KT, Siew CSQ, Vitevitch MS. Application of network analysis to identify interactive systems of eating disorder psychopathology. Psychological Medicine. 2016;46(12):2667. Available from: https://doi.org/10.1017/S003329171600012X
  10. Migenda N, Möller R, Schenck W. Adaptive dimensionality reduction for neural network-based online principal component analysis. PLOS ONE. 2021;16(3):e0248896. Available from: https://doi: 10.1371/journal.pone.0248896
  11. Zhang W, He Q, Chen W. Target tracking algorithm combined part-based and redetection for UAV. J Wireless Com Network. 2020;2020. Available from: https://doi.org/10.1186/s13638-020-01696-3
  12. Ruiz M, Mujica LE, Sierra J, Pozo F, Rodellar J. Multiway principal component analysis contributions for structural damage localization. Structural Health Monitoring. 2018;17(5):1151–1165. Available from: https://doi:10.1177/1475921717737971
  13. Khoa TV, Saputra YM, Hoang DT, Trung NL, Nguyen D, Ha NV, et al. Collaborative Learning Model for Cyberattack Detection Systems in IoT Industry 4.0. 2020 IEEE Wireless Communications and Networking Conference (WCNC). 2020;p. 1–6. Available from: https://doi:10.1109/WCNC45663.2020.9120761
  14. Zhao F, Zeng Z, Liu H, Lan R, Fan J. Semisupervised Approach to Surrogate-Assisted Multiobjective Kernel Intuitionistic Fuzzy Clustering Algorithm for Color Image Segmentation. IEEE Transactions on Fuzzy Systems. 2020;28(6):1023. Available from: https://doi: 10.1109/TFUZZ.2020.2973121
  15. Fallahpour A, Nayeri S, Sheikhalishahi M, Wong KY, Tian G, Fathollahi-Fard AM. A hyper-hybrid fuzzy decision-making framework for the sustainable-resilient supplier selection problem: a case study of Malaysian Palm oil industry. Environmental Science and Pollution Research. 2021. Available from: https://doi.org/10.1007/s11356-021-12491-y
  16. Hedar ARR, Abdulaziz SN, Mabrouk E, El-Sayed GA. Wireless Sensor Networks Fault-Tolerance Based on Graph Domination with Parallel Scatter Search. Sensors. 2020;20(12):3509. Available from: https://doi.org/10.3390/s20123509
  17. Valdovinos IA, Pérez-Díaz JA, Choo KKRKR, Botero JF. Emerging DDoS attack detection and mitigation strategies in software-defined networks: Taxonomy, challenges and future directions. Journal of Network and Computer Applications. 2021;187:103093. Available from: https://doi:10.1016/j.jnca.2021.103093
  18. Ranjani S, NY, Ananth AG, Reddy LS. Optimal Cluster-Based Data Aggregation in WSN for Healthcare Application. Adv. Dyn. Syst. Appl. 2021;16(2):683–701.
  19. Shirakami A, Hase T, Yamaguchi Y, Shimono M. Cold Spring Harbor Laboratory. 2021. Available from: https://doi.org/10.1101/2021.10.19.464982
  20. Siew CSQ, Wulff DU, Beckage NM, Kenett YN, Meštrović A. Cognitive Network Science: A Review of Research on Cognition through the Lens of Network Representations, Processes, and Dynamics. Complexity. 2019;2019:1–24. Available from: https://doi: 10.1155/2020/1574796


© 2022 Moorthy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.