• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 27, Pages: 2811-2822

Review Article

Intelligent greenhouse monitoring and control scheme: An arrangement of Sensors, Raspberry Pi based Embedded System and IoT platform

Received Date:24 April 2020, Accepted Date:01 June 2020, Published Date:31 July 2020


Objectives/ Methods: The conventional farming approaches have been found unable to deliver an appropriate quantity of fertilizer. Similarly, no explicit measure can be established to regulate the climate parameters. In this study, we have developed a prototype comprising a sensor network (SN) based node, Raspberry Pi based embedded system (ES) that is active to monitor the climatic parameters with air temperature, air humidity, soil moisture,air carbon dioxide, and light intensity within a greenhouse environment.Raspberry Pi based ES is integrated with internet-of-things (IoT) analytics, termed as ThingSpeak, and sensor nodes are physically placed in a greenhouse environment to record climate parameter data being forwarded to the gateway. The gateway nodes direct this data to the agriculture professional(s) through a web browser over the internet. Findings: Based on the received data, the ES triggers the intelligent decision-making by implementing appropriate arrangements to regulate climate parameters. For example, the greenhouse climate is controlled through switching ``ON'' certain devices i.e., lights, water sprinklers/exhaust fan, and fan. We deliberate that the proposed scheme can be implementable at a bigger scale without any difficulty and it will be much advantageous for an increase in sustainability, productivity, and profitability of a farming system. Novelty: Up to the authors' best knowledge, it is the first wireless deployment of ThingSpeak analytics for a smart greenhouse environment by using the Raspberry Pi. The main advantages of this intelligent crop monitoring system include uninterrupted mobile monitoring of the greenhouse, improved crop yield and productivity, negligible human interface/dependency.

Keywords: Agricultural monitoring; greenhouses; embedded system; sensor networks (SN); IoT


  1. Gluhak A, Krco S, Nati M, Pfisterer D, Mitton N, Razafindralambo T. A survey on facilities for experimental internet of things research. IEEE Communications Magazine, Institute of Electrical and Electronics Engineers. Available from: https://dx.doi.org/10.1109/MCOM.2011.6069710
  2. Al-Adwan I, Al-D MSN. The use of zigbee wireless network for monitoring and controlling greenhouse climate. International Journal of Engineering and Advanced Technology. 2012;2:35–39.
  3. Shamshiri R, Ismail WIW. A review of greenhouse climate control and automation systems in tropical regions. J. Agric. Sci. Appl. 2013;2:176–183.
  4. Benammar M, Abdaoui A, Ahmad S, Touati F, Kadri A. A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring. Sensors. 2018;18(2):581. Available from: https://dx.doi.org/10.3390/s18020581
  5. Rahali A, Alami H, Hilali A. Design and Implementation of a System for Monitoring and Remote Control of a Greenhouse Climate Parameters. Journal of Automation and Control Engineering. 2015;3:425–427. Available from: https://dx.doi.org/10.12720/joace.3.5.425-427
  6. Jayasundara JMSMB, Herath HMSK, Wanniarachchi WKIL. An Automated Soil and Climatic Conditions Controlling Greenhouse: A Preliminary Study. International Journal of Scientific Engineering and Technology. 2017;6(12):349. Available from: https://dx.doi.org/10.5958/2277-1581.2017.00056.0
  7. Arshad J, Siddique MAB, Zulfiqar Z, Khokhar A, Salim S, Younas T, et al. A Novel Remote User Authentication Scheme by using Private Blockchain-Based Secure Access Control for Agriculture Monitoring. 2020 International Conference on Engineering and Emerging Technologies (ICEET). 2020;p. 1–9.
  8. Suma N, Samson SR, Saranya S, Shanmugapriya G, Subhashri R. IOT based smart agriculture monitoring system. International Journal on Recent and Innovation Trends in Computing and Communications. 2017;5:177–181.
  9. Gondchawar N, Kawitkar RS. IoT based smart agriculture. International Journal on Recent and Innovation Trends in Computing and Communications Engineering. 2016;5:838–842.
  10. Aher A, Kasar J, Ahuja P, Jadhav V. Smart agriculture using clustering and IOT. Int. Res. J. Eng. Technol. 2018;5:4065–4068.
  11. Jayaraman P, Yavari A, Georgakopoulos D, Morshed A, Zaslavsky A. Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt. Sensors. 2016;16(11):1884. Available from: https://dx.doi.org/10.3390/s16111884
  12. Mumtaz Z, Ullah S, Ilyas Z, Aslam N, Iqbal S, Liu S, et al. An Automation System for Controlling Streetlights and Monitoring Objects Using Arduino. Sensors. 2018;18:3178. Available from: https://dx.doi.org/10.3390/s18103178
  13. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems. 2013;29:1645–1660. Available from: https://dx.doi.org/10.1016/j.future.2013.01.010
  14. Kiani F, Amiri E, Zamani M, Khodadadi T, Manaf AA. Efficient Intelligent Energy Routing Protocol in Wireless Sensor Networks. International Journal of Distributed Sensor Networks. 2015;11(3):618072. Available from: https://dx.doi.org/10.1155/2015/618072
  15. Hakojarvi M, Hautala M, Ahokas J, Oksanen T, Maksimow T, Aspiala A, et al. A Platform for simulation of automated crop production. Agronomy Research Journal. 2010;8:797–806.
  16. Inglada J, Arias M, Tardy B, Hagolle O, Valero S, Morin D, et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sensing. 2015;7:12356–12379. Available from: https://dx.doi.org/10.3390/rs70912356
  17. Balanthandapani R, Boopathi D, Jotheeshwaran S, Arundeva G, Saranya C. Automatic rain water and crop saving system using embedded technology. International Journal of Science Engineering and Technology Research. 2015;4:577–580.
  18. Li J, Huang G, Arshad J. Cross-tier interference mitigation for RTDD-based macro-femto networks. IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). 2015. Available from: https://dx.doi.org/10.1109/PIMRC.2015.7343566
  19. Olvera-Olvera CA, Duarte-Correa D, Ramirez-Rodriguez SR, Alaniz-Lumbreras PD, Lara-Herrera A, Gomez-Melendez D, et al. Development of a remote sensing and control system for greenhouse applications. African Journal of Agricultural Research. 2011;6:4947–4953. Available from: https://doi.org/10.5897/AJAR11.1231
  20. Chaudhary DD, Nayse SP, Waghmare LM. Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture. International Journal of Wireless & Mobile Networks. 2011;3(1):140–149. Available from: https://dx.doi.org/10.5121/ijwmn.2011.3113
  21. Cagnetti F. Leccese M, Trinca D. A New Remote and Automated Control System for the Vineyard Hail Protection Based on ZigBee Sensors, Raspberry-Pi Electronic Card and WiMAX. Journal of Agricultural Science and Technology B. 2013;3(12):853–864.
  22. Mary A, Rose X, Rajasekaran L, K. Continuous and remote monitoring of ground water level measurement in a well. International Journal of Water. 2018;12(4):356–369. Available from: https://doi.org/10.1504/IJW.2018.095397
  23. Greenville AC, Emery NJ. Gathering lots of data on a small budget. Science. 2016;353:1360–1361. Available from: https://dx.doi.org/10.1126/science.aag3057
  24. Potentiometer. (accessed ) Available from: https://components101.com/potentiometer
  25. Akhtar M, Hussain J, Arshad, Ahmad. User Authentication Scheme for Greenhouse Remote Monitoring System using WSNs/IOT. Proceedings of the 3rd International Conference on Future Networks and Distributed Systems. 2019.
  26. Arduino Ethernet Shield 2. Arduino Ethernet Shield. (accessed ) Available from: https://store.arduino.cc/usa/arduino-ethernet-shield-2
  27. Standard LCD 20x4. (accessed ) Available from: https://www.adafruit.com/product/198
  28. Ahmad U, Subrata DM, Arif C. Speaking Plant Approach for Automatic Fertigation System in Greenhouse. International Journal of Signal Processing, Image Processing and Pattern Recognition. 2011;4(3).
  29. AMUR, Asif RM, Tariq R, Javed A. Gsm based solar automatic irrigation system using moisture, temperature and humidity sensors. International Conference on Engineering Technology and Technopreneurship. 2017;(ICE2T). Available from: https://dx.doi.org/10.1109/ICE2T.2017.8215945
  30. Haule J, Michael K. Deployment of wireless sensor networks (WSN) in automated irrigation management and scheduling systems: a review. Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT. 2014.
  31. Tay NNW, Botzheim J, Kubota N. Human-Centric Automation and Optimization for Smart Homes. IEEE Transactions on Automation Science and Engineering. 2018;15(4):1759–1771. Available from: https://dx.doi.org/10.1109/tase.2018.2789658


© 2020 Arshad, Tariq,Saleem, Rehman, Munir,Amiri Golilarz, Saleem.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.