• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 47, Pages: 4547-4560

Original Article

Interrogation of Dynamic Data Loss in Long Range Wireless Sensor Networks by Utilizing CatBoost-MLGBA to Detect Anomalies and Unusual Patterns

Received Date:02 October 2023, Accepted Date:16 October 2023, Published Date:30 December 2023


Objectives: To propose a novel AI-based quantum key distribution optimization model to detect abnormal sensor readings, communication pattern between nodes, and intrusions during data transformation in long-range wireless sensor networks (LoRA-WSNs). In order to optimize the QKD in WSNs, machine learning boosting techniques are employed to minimize data loss and maximize data integrity. Methods: The CatBoost machine learning-based gradient boosting algorithm (CatBoost-MLGBA) is employed for QKD optimization and to detect abnormal node communications and patterns during data transfer by training historical network data. The linear regression method (LRM) with key generation rates is used to predict network attacks, which helps optimize the QKD more effectively. Lasso Regularization (L1R) is utilized to spot and recover the data in networks, and Deep Q-Networks (DQN-WSN) combined with the shortest path method is used to find alternate routing for the finest node search and data transfer. The WSN-DS historical dataset is utilized to train the CatBoost-MLGBA model to detect anomalies effectively. The OMNET++ tool is used to assess the performance of the proposed CatBoost-MLGBA model by comparing it with prevailing protocols such as ReLeC-WSN, RTM-ANN, and DL-IDSWSN. Findings: The new AI based optimization model, CatBoost-MLGBA outperforms the existing protocols in preventing data loss by enhancing security features. The proven results show that the data loss is minimized to 10%, with a 9% energy consumption rate, 95% network lifetime, 97% PDR rate, 91% robustness to anomaly attacks, and 6 seconds data transmission speed rate. Novelty: The CatBoost-MLGBA model has the ability to enhance security features and prevent data loss during data transfer in LoRa-WSNs. The new method effectively optimizes the key distribution for secured data transmission and improves the packet delivery ratio. The challenges of the prevailing security protocols, such as ReLeC-WSN, RTM-ANN, and DL-IDSWSN, are addressed.

Keywords: WSN Security, CatBoost Model, Advanced Networking, Energy Efficiency, Key Optimization Model, Gradient Boost Method


  1. Sharma T, Balyan A, Nair R, Jain P, Arora S, Ahmadi F. ReLeC: A Reinforcement Learning-Based Clustering-Enhanced Protocol for Efficient Energy Optimization in Wireless Sensor Networks. Wireless Communications and Mobile Computing. 2022;2022:1–16. Available from: https://doi.org/10.1155/2022/3337831
  2. Hassan KMA, Madkour MA, Nouh SAEH, Realtime. A Realtime Adaptive Trust Model Based on Artificial Neural Networks for Wireless Sensor Networks. Journal of Cyber Security and Mobility. 2023;12(04):519–546. Available from: https://journals.riverpublishers.com/index.php/JCSANDM/article/view/19103
  3. Ahmad R, Wazirali R, Abu-Ain T. Machine Learning for Wireless Sensor Networks Security: An Overview of Challenges and Issues. Sensors. 2022;22(13):1–35. Available from: https://doi.org/10.3390/s22134730
  4. Zhiqiang L, Mohiuddin G, Jiangbin Z, Asim M, Sifei W. Intrusion detection in wireless sensor network using enhanced empirical based component analysis. Future Generation Computer Systems. 2022;135:181–193. Available from: https://doi.org/10.1016/j.future.2022.04.024
  5. Gebremariam JGG, Panda S, Indu. Localization and Detection of Multiple Attacks in Wireless Sensor Networks Using Artificial Neural Network. Wireless Communications and Mobile Computing. 2023;2023:1–29. Available from: https://doi.org/10.1155/2023/2744706
  6. Gutierrez-Portela F, Almenarez-Mendoza F, Calderon-Benavides L, Romero-Riano E. Security perspective of wireless sensor networks. Revista UIS ingenierias. 2021;20(3):189–202. Available from: https://doi.org/10.18273/revuin.v20n3-2021014
  7. Nithyanandh S, Omprakash S, Megala D, Karthikeyan MP. Energy Aware Adaptive Sleep Scheduling and Secured Data Transmission Protocol to enhance QoS in IoT Networks using Improvised Firefly Bio-Inspired Algorithm (EAP-IFBA) Indian Journal Of Science And Technology. 2023;16(34):2753–2766. Available from: https://doi.org/10.17485/IJST/v16i34.1706
  8. Kaushik A, Al-Raweshidy H. A novel intrusion detection system for internet of things devices and data. Wireless Networks. 2023;p. 1–10. Available from: https://doi.org/10.1007/s11276-023-03435-0
  9. Dahou A, Elaziz MA, Chelloug SA, Awadallah MA, Al-Betar MA, Al-Qaness MAA, et al. Intrusion Detection System for IoT Based on Deep Learning and Modified Reptile Search Algorithm. Computational Intelligence and Neuroscience. 2022;2022:1–15. Available from: https://doi.org/10.1155/2022/6473507
  10. Ismail S, Dawoud DW, Reza H. Securing Wireless Sensor Networks Using Machine Learning and Blockchain: A Review. Future Internet. 2023;15(6):1–45. Available from: https://doi.org/10.3390/fi15060200
  11. Nithyanandh S, Jaiganesh V. Quality of service enabled intelligent water drop algorithm based routing protocol for dynamic link failure detection in wireless sensor network. Indian Journal of Science and Technology. 2020;2020(16):1641–1647. Available from: https://doi.org/10.17485/IJST/v13i16.19
  12. Khan T, Singh K, Shariq M, Ahmad KS, Savita KS, Ahmadian A, et al. An efficient trust-based decision-making approach for WSNs: Machine learning oriented approach. Computer Communications. 2023;209:217–229. Available from: https://doi.org/10.1016/j.comcom.2023.06.014
  13. Nithyanandh S, Jaiganesh V. Dynamic Link Failure Detection using Robust Virus Swarm Routing Protocol in Wireless Sensor Network. International Journal of Recent Technology and Engineering. 2019;8(2):1574–1579. Available from: https://www.ijrte.org/wp-content/uploads/papers/v8i2/B2271078219.pdf
  14. Abhale AB, Reddy AJ. Deep Learning Perspectives to Detecting Intrusions in Wireless Sensor Networks. International Journal of Intelligent Systems and Applications in Engineering. 2023;11(2S):18–26. Available from: https://ijisae.org/index.php/IJISAE/article/view/2504
  15. Ren J, Li S, Song Y, Li M. Deep Learning Based Identification Method for Signal-Level Wireless Protocol. IEEE Access. 2022;10:118187–118197. Available from: https://ieeexplore.ieee.org/document/9942820
  16. Falahkheirkhah K, Yeh K, Mittal S, Pfister L, Bhargava R. Deep learning-based protocols to enhance infrared imaging systems. Chemometrics and Intelligent Laboratory Systems. 2021;217:104390. Available from: https://doi.org/10.1016/j.chemolab.2021.104390
  17. Muruganandam S, Joshi R, Suresh P, Balakrishna N, Kishore KH, Manikanthan SV. A deep learning based feed forward artificial neural network to predict the K-barriers for intrusion detection using a wireless sensor network. Measurement: Sensors. 2023;25:1–9. Available from: https://doi.org/10.1016/j.measen.2022.100613
  18. Okey OD, Maidin SS, Rosa RL, Toor WT, Melgarejo DC, Wuttisittikulkij L, et al. Quantum Key Distribution Protocol Selector Based on Machine Learning for Next-Generation Networks. Sustainability. 2022;14(23):1–15. Available from: https://doi.org/10.3390/su142315901
  19. Tan X, Su S, Huang Z, Guo X, Zuo Z, Sun X, et al. Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm. Sensors. 2019;19(1):1–15. Available from: https://doi.org/10.3390/s19010203


© 2023 Kowsalya & Banupriya. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.