• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 23, Pages: 1702-1715

Original Article

Iterative Approach for Solving Variational Inequality Problems using Fixed Point Concept

Received Date:29 November 2022, Accepted Date:01 April 2023, Published Date:09 June 2023


Objectives: The objective of the paper is to find the solutions of variational inequality problems via the concept of common fixed point of a sequence of nearly nonexpansive mappings. Methods: The present work uses three step iterative algorithm to get the solutions of variational inequality problems. Findings: By applying three step iterative algorithm, solutions of variational inequality problem has been obtained. Novelty: In the present work, a specific three step iterative algorithm has been deployed to get solution. Furthermore, Matlab programming has been utilised to eastablish the accuracy of the results. Mathematics Subject Classification 2020: 47H06, 47H09, 47H10, 47J25.

Keywords: Variational inequality; Fixed point; Nonexpansive mapping; Iterative algorithm; Matlab programming


  1. Stampacchia G. Formes bilineaires coercitives sur les ensembles convexes. C R Acad Sci. 1964;258:4413–4416.
  2. Moudafi A. Viscosity Approximation Methods for Fixed-Points Problems. Journal of Mathematical Analysis and Applications. 2000;241(1):46–55. Available from: https://doi.org/10.1006rjmaa.1999.6615
  3. Marino G, Xu HKK. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. Journal of Mathematical Analysis and Applications. 2007;329(1):336–346. Available from: https://doi.org/10.1016/j.jmaa.2006.06.055
  4. Akram M, Dilshad M, Rajpoot AK, Babu F, Ahmad R, Yao JCC. Modified Iterative Schemes for a Fixed Point Problem and a Split Variational Inclusion Problem. Mathematics. 2022;10(12):2098. Available from: https://doi.org/10.3390/math10122098
  5. Abass HA, Ugwunnadi GC, Narain OK, Darvish V. Inertial Extragradient Method for Solving Variational Inequality and Fixed Point Problems of a Bregman Demigeneralized Mapping in a Reflexive Banach Spaces. Numerical Functional Analysis and Optimization. 2022;43(8):933–960. Available from: https://doi.org/10.1080/01630563.2022.2069813
  6. Lamba P, Panwar A. A Picard S* iterative algorithm for approximating fixed points of generalized a-nonexpansive mappings. J. Math. Comput. Sci. 2021;11(3):2874–2892.
  7. Panwar A, Morwal R, Kumar S. Fixed points of ρ -nonexpansive mappings using MP iterative process. Advances in the Theory of Nonlinear Analysis and its Applications. 2022;6(2):229–245. Available from: https://doi.org/10.31197/atnaa.980093
  8. Chuadchawna P, Farajzadeh A, Kaewcharoen A. Convergence theorems of a modified iteration process for generalized nonexpansive mappings in hyperbolic spaces. Tohoku Mathematical Journal. 2020;72(4). Available from: https://doi.org/10.2748/tmj.20191210
  9. Lohawech P, Kaewcharoen A, Farajzadeh A. Convergence Theorems for the Variational Inequality Problems and Split Feasibility Problems in Hilbert Spaces. International Journal of Mathematics and Mathematical Sciences. 2021;2021:1–7. Available from: https://doi.org/10.1155/2021/9980309
  10. Berinde V, Takens F. Iterative Approximation of Fixed Points. In: Iterative approximation of fixed points. (Vol. 1912, pp. 322) Springer Berlin Heidelberg. 2007.
  11. Ceng LCC, Ansari QH, Yao JCC. Some iterative methods for finding fixed points and for solving constrained convex minimization problems. Nonlinear Analysis: Theory, Methods & Applications. 2011;74(16):5286–5302. Available from: https://doi.org/10.1016/j.na.2011.05.005
  12. Goebel K, Kirk WA. Topics in metric fixed point theory . (Vol. 28) Cambridge University Press. 1990.
  13. Xu HK. Strong convergence of an iterative method for nonexpansive and accretive operators. Journal of Mathematical Analysis and Applications. 2006;314(2):631–643. Available from: https://doi.org/10.1016/j.jmaa.2005.04.082


© 2023 Panwar & Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.