• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 3, Pages: 167-180

Original Article

Laccase Production Under Optimized Parameters by Aspergillus oryzae, an Endophytic Fungus and their Application to Waste Water Treatment

Received Date:12 August 2022, Accepted Date:22 December 2022, Published Date:20 January 2023


Objective: To isolate an endophytic fungal laccase producer from the Ziziphus mauritiana plant leaves in the surroundings of paper mill effluents and to study its role in the decolorization of synthetic dyes, removal of COD and phenol from industrial effluents. Methods: Laccase-producing endophytic fungi were isolated and screened by using an agar plate method. The positive isolates were identified, and laccase activity was determined by using spectrophotometric methods to monitor the oxidation of guaiacol and optimizing various parameters affecting laccase production. The molecular mass of the purified laccase enzyme was determined by using 12% SDSgel electrophoresis. Industrial effluents were treated with laccase to remove phenol, decolorize dyes, and reduce chemical oxygen demand. For the analysis, a spectrophotometric method was employed. Findings: One of the most effective endophytic fungal isolates, Aspergillus oryzae, was screened as a maximum laccase producer. The optimal pH of 6, temperature of 35 oC, inoculation period of 8 days, and the inoculum number of 3 discs/100 ml of Czapek Dox Broth in submerged culture were determined for the maximum laccase production. Sucrose and sodium nitrate, as carbon and nitrogen sources, considerably assisted laccase production. The molecular weight of the isolated laccase from A. oryzae was 66 kDa. The greatest activity was determined to be 64.2 U/mL, which is two times more than under unoptimized conditions. After the fifth day of exposure, the A. oryzae laccase decolorizes the synthetic dyes Bromophenol blue, Congo red, Methyl orange, and Phenol red.Chemical oxygen demand and phenolic pollutants’ clearance rates were 38–43% and 60% from coal and textile effluents during their exposure times, respectively. Novelty: A. oryzae was discovered to be a potent natural laccase producer endophytic fungus from paper mill effluents, which may be used for decolorizing non-textile dyes, treatment of various industrial effluents, and other industrial purposes.

Keywords: Endophytic Fungi; Aspergillus oryzae; Laccase; Chemical oxygen demand; Synthetic dyes


  1. Shekher SR, Sehgal S, Kamthania M, Kumar A. Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Research. 2011;2011:1–11. Available from: https://doi.org/10.4061/2011/217861
  2. Thruston CF. The structure and function of fungal laccases. Microbiology. 1994;140(1):19–26. Available from: http://dx.doi.org/10.1099/13500872-140-1-19
  3. Loi M, Glazunova O, Fedorova T, Logrieco AF, Mulè G. Fungal Laccases: The Forefront of Enzymes for Sustainability. Journal of Fungi. 2021;7(12):1048. Available from: https://doi.org/10.3390/jof7121048
  4. Sathish L, Pavithra N, Anada K. Antimicrobial activity and biodegrading enzymes of endophytic fungi from Eucalyptus. International Journal of Pharmaceutical Sciences and Research. 2012;3(8):2574–2583. Available from: http://dx.doi.org/10.13040/IJPSR.0975-8232.3(8).2574-83
  5. De FS, Aza P, Gilabert J, Santiago G, Kilic¸ S, Sener ME, et al. Engineering of a fungal laccase to develop a robust, versatile and highly-expressed biocatalyst for sustainable chemistry. Green Chem. 2019;19:1–14. Available from: https://doi.org/10.1039/C9GC02475A
  6. Al-Gheethi AA, Talip B, Mohamed R, Kassim AH. Mycoremediation of Remazol Brilliant Blue R in greywater by a novel local strain of Aspergillus iizukae 605EAN: optimization and mechanism study. International Journal of Environmental Analytical Chemistry. 2019;100(14):1–19. Available from: https://doi.org/10.1080/03067319.2019.1657852
  7. Liu C, Takagi R, Cheng L, Saeki D, Matsuyama H. Enzyme-aided forward osmosis (E-FO) process to enhance removal of micropollutants from water resources. Journal of Membrane Science. 2020;593:117399. Available from: https://doi.org/10.1016/j.memsci.2019.117399
  8. Bayburt C, Karaduman AB, Gürsu BY, Tuncel M, Yamaç M. Decolourization and detoxification of textile dyes by Lentinus arcularius in immersion bioreactor scale. International Journal of Environmental Science and Technology. 2020;17(2):945–958. Available from: https://doi.org/10.1007/s13762-019-02519-9
  9. Olajuyigbe FM, Fatokun CO. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. International Journal of Biological Macromolecules. 2017;94:535–543. Available from: https://doi.org/10.1016/j.ijbiomac.2016.10.037
  10. Forootanfar H, Rezaei S, Zeinvand-Lorestani H, Tahmasbi H, Mogharabi M, Ameri A, et al. Studies on the laccase-mediated decolorization, kinetic, and microtoxicity of some synthetic azo dyes. Journal of Environmental Health Science and Engineering. 2016;14(1):7–12. Available from: https://doi.org/10.1186/s40201-016-0248-9
  11. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA. Are tropical fungal endophytes hyperdiverse? Ecology Letters. 2000;3(4):267–274. Available from: https://doi.org/10.1046/j.1461-0248.2000.00159.x
  12. Kiiskinen LLL, Ratto M, Kruus K. Screening for novel laccase-producing microbes. Journal of Applied Microbiology. 2004;97(3):640–646. Available from: https://doi.org/10.1111/j.1365-2672.2004.02348.x
  13. Monnat T, Emond S, Cambon E, Bordes F, Marty A, Nicaud J, et al. Engineering and production of laccase from Trametes versicolor in the yeast Yarrowia lipolytica. Bioresource Technology. 2012;125:267–274. Available from: https://doi.org/10.1016/j.biortech.2012.07.117
  14. Sidhu AK, Agrawal SB, Sable VS, Patil SN, Gaikwad VB. Isolation of Colletotrichum gloeosporioides gr., a novel endophytic Laccase-producing fungus from the leaves of a medicinal plant, Piper betle. International Journal of Scientific and Engineering Research. 2014;5(2):1087–1098. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=230653c32efc90fd4cc8e2ffe0aefe454bdb1894
  15. Jhadav A, Vamsi KK, Khairnar Y, Boraste A, Gupta N, Trivedi S, et al. Optimization of Production and Partial Purification of Laccase by Phanerochaete chrysosporium using Submerged Fermentation. International Journal of Microbiology Research. 2009;1(2):9–12. Available from: https://bioinfopublication.org/files/articles/1_2_2_IJMR.pdf
  16. Mahmoud MG, Rifaat HM, Sayed E, OH, Beih E, Selim FM, et al. Effect of inducers and process parameters on laccase production by locally isolated marine Strptomyces lydicus from Red Sea,Egypt. International Journal of ChemTech Research. 2013;5:15–23. Available from: https://doi.org/10.5897/AJB2016.15509
  17. Schmitt S, Souza RD, Bettin F, Dillon AJP, Valle JAB, Andreaus J. Decolorization of aqueous solutions of disperse textile dyes by oxidoreductases. Biocatalysis and Biotransformation. 2012;30(1):48–56. Available from: https://doi.org/10.3109/10242422.2012.645339
  18. Rice EW, Baird RB, Eaton AD, Clesceri LS. Standard methods for the examination of water and wastewater. (22). Washington DC. Water Environment Federation. 2012.
  19. souza-Ticlo D, Verma AK, Mathew M, Raghukumar C. Effect of nutrient nitrogen on laccase production, its isozyme pattern, and effluent decolorization by the fungus NIOCC#2a, isolated from mangrove wood. Indian Journal of Marine Sciences. 2006;35(4):364–372. Available from: http://nopr.niscpr.res.in/handle/123456789/1536
  20. Sidhu AK, Darade SB, Bhavsar PP, Gaikwad VB, Patil SN. Isolation, Screening, and Optimization for Laccase production by Scytalidium lignicola pesante under submerged. International Journal of Current Microbiology and Applied Sciences. 2017;6(4):2477–2481. Available from: https://doi.org/10.20546/ijcmas.2017.604.289
  21. Papinutti VL, Diorio LA, Forchiassin F. Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran. Journal of Industrial Microbiology & Biotechnology. 2003;30(3):157–160. Available from: https://doi.org/10.1007/s10295-003-0025-5
  22. Eugenio ME, Carbajo JM, Martín JA, González AE, Villar JC. Laccase production by<i>Pycnoporus sanguineus under different culture conditions. Journal of Basic Microbiology. 2009;49(5):433–440. Available from: https://doi.org/10.1002/jobm.200800347
  23. Jose LJ, Joel GJ. Optimization of culture conditions for improved laccase production by Agaricus sp.LCJ262. International Journal of Current Research. 2014;6(11):9517–9539. Available from: https://doi.org/10.24941/ijcr.2017
  24. Wakil SM, Adebayo-Tayo BC, Odeniyi OA, Salawu KO, Eyiolawi SA, Onilude AA. Production, Characterization and Purification of Laccase by Yeasts Isolated from Ligninolytic Soil. Journal of Pure and Applied Microbiology. 2017;11(2):847–869. Available from: https://dx.doi.org/10.22207/JPAM.11.2.24
  25. Ali M, Ouf SA, Khalil NM, El-Ghany M. Biosynthesis of laccase by Aspergillus flavus NG85 Isolated from Saint Catherine protectorate. Egyptian Journal of Botany. 2015;55(1):127–147. Available from: https://doi.org/10.21608/ejbo.2015.228
  26. Abd RA, Monssef E, Hassan EA, Ramadan EM. Production of laccase enzymes for their potential application to decolorize fungal pigments on aging paper and parchment. Annals of Agricultural Sciences. 2016;61(1):145–54. Available from: https://doi.org/10.1016/j.aoas.2015.11.007
  27. Kumar R, Kaur J, Jain S, Kumar A. Optimization of laccase production from Aspergillus flavus by design of experiment technique: Partial purification and characterization. Journal of Genetic Engineering and Biotechnology. 2016;14(1):125–131. Available from: https://doi.org/10.1016/j.jgeb.2016.05.006
  28. Vivekanandan K, Sivaraj S, Kumaresan S. Characterization and purification of laccase enzyme from Aspergillus nidulans CASVK3 from vellar estuary southeast coast of India. International Journal of Current Microbiology and Applied Sciences. 2014;3(10):213–240. Available from: https://www.ijcmas.com/vol-3-10/K.E.Vivekanandan,%20et%20al.pdf
  29. Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G. Fungal Laccases and Their Applications in Bioremediation. Enzyme Research. 2014;2014:1–21. Available from: https://doi.org/10.1155/2014/163242
  30. Vandana P, Masih H, Kumar Y, Singh AK, Peter JK. Production parameter optimization for laccases by<i>Aspergillus niger</i>. International Journal of Bioinformatics and Biological Science. 2014;2(3and4):179. Available from: https://doi.org/10.5958/2321-7111.2014.00015.8
  31. Strong PJ, Burgess JE. Bioremediation of a wine distillery wastewater using white rot fungi and the subsequent production of laccase. Water Science and Technology. 2007;56(2):179–186. Available from: https://doi.org/10.2166/wst.2007.487
  32. El-Baz F, El-Senousy MK, Darwesh W, O, Gohary E, A. Antiviral-antimicrobial and schistosomicidal activities of Eucalyptus camaldulensis essential oils. International Journal of Pharmaceutical Sciences Review and Research. 2015;31(1):262–268. Available from: https://doi.org/10.1038/nsb823
  33. Yadav M, Bista G, Maharjan R, Poudyal P, Mainali M, Sreerama L, et al. Secretory Laccase from Pestalotiopsis Species CDBT-F-G1 Fungal Strain Isolated from High Altitude: Optimization of Its Production and Characterization. Applied Sciences. 2019;9(2):340. Available from: https://doi.org/10.3390/app9020340
  34. Forootanfar H, Moezzi A, Aghaie-Khozani M, Mahmoudjanlou Y, Ameri A, Niknejad F, et al. Synthetic dye decolorization by three sources of fungal laccase. Iranian Journal of Environmental Health Science & Engineering. 2012;9(1):27–37. Available from: http://doi.org/10.1186/1735-2746-9-27
  35. Singh L, Singh VP. Biodegradation of Textile Dyes, Bromophenol Blue and Congored by Fungus Aspergillus Flavus. Environment & We an International Journal of Science and Technology. 2010;5:235–277. Available from: https://www.researchgate.net/publication/268298560
  36. Rao P, Prathibha N, Birawat KK, Kankrej S, Nayak S, Varsha N. Decolourisation of Synthetic Dyes Using Aspergillus Species. Journal of Chemical Engineering and Research. 2014;2(1):61–69. Available from: https://www.researchgate.net/publication/334603930
  37. Nitheranont T, Watanabe A, Suzuki T, Katayama T, Asada Y. Decolorization of Synthetic Dyes and Biodegradation of Bisphenol A by Laccase from the Edible Mushroom, Grifola frondosa. Bioscience, Biotechnology, and Biochemistry. 2011;75(9):1845–1847. Available from: https://doi.org/10.1271/bbb.110329


© 2023 Naz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.