• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 10, Pages: 899-910

Original Article

Lung Cancer Detection and Severity Analysis with a 3D Deep Learning CNN Model Using CT-DICOM Clinical Dataset

Received Date:06 December 2023, Accepted Date:31 January 2024, Published Date:27 February 2024


Objectives: To propose a new AI based CAD model for early detection and severity analysis of pulmonary (lung) cancer disease. A deep learning artificial intelligence-based approach is employed to maximize the discrimination power in CT images and minimize the dimensionality in order to boost detection accuracy. Methods: The AI-based 3D Convolutional Neural Network (3D-DLCNN) method is employed to learn complex patterns and features in a robust way for efficient detection and classification. The pulmonary nodules are identified by 3D Mask-R-CNN at the initial level, and classification is done by 3D-DLCNN. Kernel Density Estimation (KDE) is used to discover the error data points in the extracted features for early removal before candidate screening. The study uses the CT-DICOM dataset, which includes 355 instances and 251135 CT-DICOM images with target attributes of cancer, healthy, and severity condition (if cancer is positive). Statistical outlier detection is utilized to measure the z-score of each feature to reduce the data point deviation. The intensity and pixel masking of CT-DOCIM is measured by using the ER-NCN method to identify the severity of the disease. The performance of the 3D-DLCNN model is done using the MATLAB R2020a tool and comparative analysis is done with prevailing detection and classification approaches such as GA-PSO, SVM, KNN, and BPNN. Findings: The suggested pulmonary detection 3D-DLCNN model outperforms the prevailing models with promising results of 93% accuracy rate, 92.7% sensitivity, 93.4% specificity, 0.8 AUC-ROC, 6.6% FPR, and 0.87 C-Index, which helps the pulmonologists detect the PC and identify the severity for early diagnosis. Novelty: The novel hybrid 3D-DLCNN approach has the ability to detect pulmonary disease and analyze the severity score of the patient at an early stage during the screening process of candidates. It overcomes the limitations of the prevailing machine learning models, GA-PSO, SVM, KNN, and BPNN.

Keywords: Artificial Intelligence, Disease Prediction, Lung Cancer, Deep Learning, Cancer Detection, Computational Model, 3D-DLCNN


  1. Nageswaran S, Arunkumar G, Bisht AK, Mewada S, Kumar JNVRS, Jawarneh M, et al. Lung Cancer Classification and Prediction Using Machine Learning and Image Processing. BioMed Research International. 2022;2022:1–8. Available from: https://doi.org/10.1155/2022/1755460
  2. Nazir I, Haq IU, Alqahtani SA, Jadoon MM, Dahshan M. Machine Learning-Based Lung Cancer Detection Using Multiview Image Registration and Fusion. Journal of Sensors. 2023;2023:1–19. Available from: https://doi.org/10.1155/2023/6683438
  3. Fatima FS, Jaiswal A, Sachdeva N. Lung Cancer Detection Using Machine Learning Techniques. Critical Reviews in Biomedical Engineering. 2022;50(6):45–58. Available from: https://pubmed.ncbi.nlm.nih.gov/37082976/20
  4. Shimazaki A, Ueda D, Choppin A, Yamamoto A, Honjo T, Shimahara Y, et al. Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Scientific Reports. 2022;12(1):1–10. Available from: https://doi.org/10.1038/s41598-021-04667-w
  5. Li P, Wang S, Li T, Lu J, Huangfu Y, Wang D. Lung-PET-CT-Dx | A Large-Scale CT and PET/CT Dataset for Lung Cancer Diagnosis. The Cancer Imaging Archive. 2020. Available from: https://doi.org/10.7937/TCIA.2020.NNC2-0461
  6. Nithyanandh S, Omprakash S, Megala D, Karthikeyan MP. Energy Aware Adaptive Sleep Scheduling and Secured Data Transmission Protocol to enhance QoS in IoT Networks using Improvised Firefly Bio-Inspired Algorithm (EAP-IFBA) Indian Journal Of Science And Technology. 2023;16(34):2753–2766. Available from: https://doi.org/10.17485/IJST/v16i34.1706
  7. Pandian R, Vedanarayanan V, Kumar DNSR, Rajakumar R. Detection and classification of lung cancer using CNN and Google net. Measurement: Sensors. 2022;24:1–4. Available from: https://doi.org/10.1016/j.measen.2022.100588
  8. Shah AA, Malik HAM, Muhammad A, Alourani A, Butt ZA. Deep learning ensemble 2D CNN approach towards the detection of lung cancer. Scientific Reports. 2023;13(1):1–15. Available from: https://doi.org/10.1038/s41598-023-29656-z
  9. Kumar CA, Harish S, Ravi P, Murthy SVN, Kumar BPP, Mohanavel V, et al. Lung Cancer Prediction from Text Datasets Using Machine Learning. BioMed Research International. 2022;2022:1–10. Available from: https://doi.org/10.1155/2022/6254177
  10. Nithyanandh S, Jaiganesh V. Dynamic Link Failure Detection using Robust Virus Swarm Routing Protocol in Wireless Sensor Network. International Journal of Recent Technology and Engineering. 2019;8(2):1574–1579. Available from: https://www.ijrte.org/wp-content/uploads/papers/v8i2/B2271078219.pdf
  11. Thanoon MA, Zulkifley MA, Zainuri MAAM, Abdani SR. A Review of Deep Learning Techniques for Lung Cancer Screening and Diagnosis Based on CT Images. Diagnostics. 2023;13(16):1–27. Available from: https://doi.org/10.3390/diagnostics13162617
  12. Eldho KJ. Impact of Unbalanced Classification on the Performance of Software Defect Prediction Models. Indian Journal of Science and Technology. 2022;15(6):237–242. Available from: https://doi.org/10.17485/IJST/v15i6.2193
  13. Nanglia P, Kumar S, Mahajan AN, Singh P, Rathee D. A hybrid algorithm for lung cancer classification using SVM and Neural Networks. ICT Express. 2021;7(3):335–341. Available from: https://doi.org/10.1016/j.icte.2020.06.007
  14. Madasamy NS, Eldho KJ, Senthilnathan T, Deny J. A Novel Back-Propagation Neural Network for Intelligent Cyber-Physical Systems for Wireless Communications. IETE Journal of Research. 2023. Available from: https://doi.org/10.1080/03772063.2023.2173669
  15. Priyadarshini K, Alagarsamy M, Sangeetha K, Thangaraju D. Hybrid RNN-FFBPNN Optimized with Glowworm Swarm Algorithm for Lung Cancer Prediction. IETE Journal of Research. 2023. Available from: https://doi.org/10.1080/03772063.2023.2233465
  16. Joshua ESN, Bhattacharyya D, Chakkravarthy M, Byun YC. 3D CNN with Visual Insights for Early Detection of Lung Cancer Using Gradient-Weighted Class Activation. Journal of Healthcare Engineering. 2021;2021:1–11. Available from: https://doi.org/10.1155/2021/6695518
  17. Shah AA, Malik HAM, Muhammad A, Alourani A, Butt ZA. Deep learning ensemble 2D CNN approach towards the detection of lung cancer. Scientific Reports. 2023;13(1):1–15. Available from: https://doi.org/10.1038/s41598-023-29656-z
  18. Shafi I, Din S, Khan A, Díez IDLT, Casanova RDJP, Pifarre KT, et al. An Effective Method for Lung Cancer Diagnosis from CT Scan Using Deep Learning-Based Support Vector Network. Cancers. 2022;14(21):1–18. Available from: https://doi.org/10.3390/cancers14215457
  19. Ahmed T, Parvin MS, Haque MR, Uddin MS. Lung Cancer Detection Using CT Image Based on 3D Convolutional Neural Network. Journal of Computer and Communications. 2020;08(03):35–42. Available from: https://doi.org/10.4236/jcc.2020.83004


© 2024 Eldho & Nithyanandh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.