• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 10, Pages: 869-880

Original Article

Machine learning algorithms for Diabetes prediction and neural network method for blood glucose measurement

Received Date:05 December 2020, Accepted Date:22 March 2021, Published Date:02 April 2021


Objectives: To facilitate painless and easy method for prediction of diabetes with high accuracy and to measure blood glucose by noninvasive method using Photoplethysmography (PPG). Method: In this study, diabetes prediction is done using different machine learning algorithms on a dataset created by using samples from PIMA Indian Diabetes dataset and in vivo diabetes dataset. Machine learning algorithms used are Support Vector Machine (SVM), Decision Tree, Naïve Bayes Classifier and K Nearest Neighbor (KNN). A PPG data of 182 individuals is recorded over 1 minute duration each. Various frequency and time domain features of PPG single are extracted using single pulse wave analysis. Neural network is trained using extracted features and glucose measurement is performed. Findings: With decision tree algorithm we got highest accuracy of 89.97% for diabetes prediction and it proves to be good algorithm for consideration for measurement in diabetes treatment.Clarke Error Grid analysis for blood glucose prediction is clinically accepted, so we performed similar analysis. Using time and frequency domain features, we got 94.27 % data points in clinically accepted regions (Region A and Region B). Novelty: Based on the data collected or samples analyzed, and accuracy of our results, it is encouraging to see that further research may lead to affordable noninvasive method for detection of diabetes at early stage.

Keywords: Noninvasive; blood glucose; NIR; machine learning algorithms; photoplethysmography


  1. Chen C, Zhao XL, Li ZH, Zhu ZG, Qian SH, Flewitt A. Current and Emerging Technology for Continuous Glucose Monitoring. Sensors. 2017;17(12):182. Available from: https://dx.doi.org/10.3390/s17010182
  2. Larabi-Marie-Sainte, Aburahmah, Almohaini, Saba. Current Techniques for Diabetes Prediction: Review and Case Study. Applied Sciences. 2019;9(21):4604. Available from: https://dx.doi.org/10.3390/app9214604
  3. Gusev M, Poposka L, Spasevski G, Kostoska M, Koteska B, Simjanoska M, et al. Noninvasive Glucose Measurement Using Machine Learning and Neural Network Methods and Correlation with Heart Rate Variability. Journal of Sensors. 2020;2020:1–13. Available from: https://dx.doi.org/10.1155/2020/9628281
  4. Narkhede P, Dhalwar S, Karthikeyan B. NIR Based Non-Invasive Blood Glucose Measurement. Indian Journal of Science and Technology. 2016;9(41). Available from: https://dx.doi.org/10.17485/ijst/2016/v9i41/98996
  5. Li N, Zang H, Sun H, Jiao X, Wang K, Liu TCY, et al. A Noninvasive Accurate Measurement of Blood Glucose Levels with Raman Spectroscopy of Blood in Microvessels. Molecules. 2019;24(8). Available from: https://dx.doi.org/10.3390/molecules24081500
  6. Kamat DK, Bagul D, Patil PM. Blood Glucose Measurement Using Bioimpedance Technique. Advances in Electronics. 2014;2014:1–5. Available from: https://dx.doi.org/10.1155/2014/406257
  7. Pirnstill CW, Malik BH, Gresham VC, Coté GL. In Vivo Glucose Monitoring Using Dual-Wavelength Polarimetry to Overcome Corneal Birefringence in the Presence of Motion. Diabetes Technology & Therapeutics. 2012;14(9):819–827. Available from: https://dx.doi.org/10.1089/dia.2012.0070
  8. Tang L, Chang SJ, Chen CJ, Liu JT. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors. 2020;20(23):6925. Available from: https://dx.doi.org/10.3390/s20236925
  9. Vizhi K, Dash A. Diabetes Prediction Using Machine Learning. International Journal of Advanced Science and Technology. 2020;29(06):2842–2852. Available from: https://sersc.org/journals/index.php/IJAST/article/view/13795
  10. Rout M, Kour A. Prediction of Diabetes Risk based on Machine Learning Techniques. IEEE International Conference on Intelligent Engineering and Management. 2020. Available from: https://doi.org/10.1109/ICIEM48762.2020.9160276
  11. Alic L, Abbas HT, Rios M, Abdulghani M, Qaraqe K. Predicting Diabetes in Healthy Population through Machine Learning. IEEE 32nd International Symposium on Computer-Based Medical Systems. 2019;p. 567–570. Available from: https://doi.org/10.1109/CBMS.2019.00117
  12. Kavakiotis I, Tsave O, Salifoglou A. Machine Learning and Data Mining Methods in Diabetes Research. Computational and Structural biotechnology Journal. 2017. Available from: https://doi.org/10.1016/j.csbj.2016.12.005
  13. Hassan AS, Malaserene I, Leema AA. Diabetes Mellitus Prediction using Classification Techniques ”. International Journal of Innovative Technology and Exploring. 2020. Available from: https://doi.org/10.35940/ijitee.E2692.039520
  14. Kaur H, Kumari V. Predictive modelling and analytics for diabetes using a machine learning approach. Applied computing and Informatics. 2018. Available from: https://doi.org/10.1016/j.aci.2018.12.004
  15. Kishore GN, Rajesh V, Reddy AVA, Sumedh K, Sai TR, Reddy. Prediction of Diabetes Using Machine Learning Classification Algorithms”. International Journal of Scientific and Technology Research. 2020;9(1).
  16. Tigga NP, Garg S. Prediction of Type 2 Diabetes using Machine Learning Classification Methods. Procedia Computer Science. 2020;167:706–716. Available from: https://dx.doi.org/10.1016/j.procs.2020.03.336
  17. Sisodia D, Sisodia DS. Prediction of Diabetes using Classification Algorithms. Procedia Computer Science. 2018;132:1578–1585. Available from: https://dx.doi.org/10.1016/j.procs.2018.05.122
  18. Reddy AT, Nagendra M. Minimal Rule-Based Classifiers using PCA on Pima-Indians-Diabetes-Dataset”. International Journal of Innovative Technology and Exploring Engineering. 2019;8(12):12. Available from: https://doi.org/10.35940/ijitee.L2476.1081219
  19. Moraes J, Rocha M, Vasconcelos G, Filho JV, Albuquerque Vd, Alexandria A. Advances in Photopletysmography Signal Analysis for Biomedical Applications. Sensors. 2018;18(6):1894. Available from: https://dx.doi.org/10.3390/s18061894
  20. Habbu KS, Joshi S, Dale M, Ghongade R. Noninvasive Blood Glucose Estimation Using Pulse Based Cepstral Coefficients. IEEE International Conference on Signal Processing and Information Security (ICSPIS). 2019. Available from: https://doi.org/10.1109/ICSPIS48135.2019.9045897
  21. Habbu S, Dale M, Ghongade R. Estimation of blood glucose by non-invasive method using photoplethysmography. Indian Academy of Science. 2019. Available from: https://doi.org/10.1007/s12046-019-1118-9
  22. Zhang Y, Zhang Y, Siddiqui SA. Non-invasive Blood-Glucose Estimation Using Smartphone PPG Signals and Subspace KNN Classifier”. Electrotechnical Review. 2019;86(1):68–74.
  23. Warke M, Kumar V, Tarale S, Galgat D, Chaudhari. Diabetes Diagnosis using Machine Learning Algorithms. International Research Journal of Engineering and Technology. 2019;6(3). Available from: https://www.irjet.net/archives/V6/i3/IRJET-V6I3277.pdf
  24. Mujumdar A, Vaidehi V. Diabetes Prediction using Machine Learning Algorithms. Procedia Computer Science. 2019;165:292–299. Available from: https://dx.doi.org/10.1016/j.procs.2020.01.047
  25. Azrar A, Ali Y, Awais M, Zaheer K. Data Mining Models Comparison for Diabetes Prediction. International Journal of Advanced Computer Science and Applications. 2018;9(8). Available from: https://dx.doi.org/10.14569/ijacsa.2018.090841
  26. Sagaro GGG, Battineni F, Amenta. Comparative Machine Learning Approach: A Follow- Up Study on Type 2 Diabetes Predictions by Cross-Validation Methods. Multidisciplinary Digital Publishing Institute, Machines. 2019. Available from: https://doi.org/10.3390/machines7040074
  27. Zou Q, Qu K, Luo Y, Yin D, Ju Y, Tang H. Predicting Diabetes Mellitus With Machine Learning Techniques. Frontiers in Genetics. 2018. Available from: https://doi.org/10.3389/fgene.2018.00515
  28. Mirzajani SS, Salimi S. Prediction and Diagnosis of Diabetes by Using Data Mining Techniques. Avicenna Journal of Medical Biochemistry. 2018;6(1):3–7. Available from: https://dx.doi.org/10.15171/ajmb.2018.02


© 2021 Bavkar & Shinde.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.