• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 28, Pages: 2849-2857

Original Article

Machine Learning Approach to Analyse Ensemble Models and Neural Network Model for E-Commerce Application

Received Date:14 June 2020, Accepted Date:27 July 2020, Published Date:07 August 2020


Objectives: The main objective of this study is to compare the performance evaluation of ensemble based methods and neural network learning on various combinations of unigram, bigram, and trigram feature vector along with feature selection (IG) and feature reduction (PCA) for sentiment classification of movie reviews. Methods: Bagging and Adaboost are the techniques used in ensemble learning to learn the sentiment classifier to get better classification accuracy, using SVM, NB as a core learner for different models of attribute vectors. The classification results of the ensemble approach are compared with neural network learning for classification of movie reviews. Among the ensemble methods, AdaBoost with base learner SVM outperforms in classifying attribute vectors for model m-iii. The backpropagation algorithm is used to improve classification accuracy in the neural network learning and IG and PCA are used in sentiment classification to reduce the feature length and training time. Findings:The classification results of ensemble based approach are compared with neural network learning. Between the two ensemble based methods, Adaboost + SVM outperform in classifying the sentiment of movie reviews for m-iii feature vector. IG and PCA are used in sentiment classification in order to reduce the feature length. Between the IG and PCA methods, IG performs better than PCA. Among IG+Adaboost+SVM and neural network learning methods, IG+Adaboost+SVM performs better than neural network learning. Improvement: In our application, we are using the ensemble based methods and neural network learning, these methods are compared and analyzed the performance for various levels of feature vectors. A classification algorithm may be designed to analyze the performance with other neural network methods.

Keywords: Machine learning; sentiment classification; bagging; AdaBoost; ensemble learning; back propagation neural network; feature selection; movie review


  1. Gül S, Kabak Ö, Topcu I. A Multiple Criteria Credit Rating Approach Utilizing Social Media Data. Data and Knowledge Engineering. 2018. Available from: https://doi.org/10.1016/j.datak.2018.05.005
  2. Elamin N. Sentiment Analysis with Supervised Learning Techniques: A Survey. Indian Journal of Science and Technology. 2020;13(3):249–268. Available from: https://dx.doi.org/10.17485/ijst/2020/v13i03/148900
  3. Xia R, Zong C, Hu X, Cambria E. Feature ensemble plus sample selection: Domain adaptation for sentiment classification. IJCAI Int Jt Conf Artif Intell. 2015;p. 4229–4262.
  4. Namsrai E, Munkhdalai T, Li M, Shin JH, Namsrai OE, Ryu KH. A Feature Selection-based Ensemble Method for Arrhythmia Classification. Journal of Information Processing Systems. 2013;9(1):31–40. Available from: https://dx.doi.org/10.3745/jips.2013.9.1.031
  5. Wang G, Ma J, Yang S. Igf-bagging: Information gain based feature selection for bagging. Int J Innov Comput Inf Control. 2011.
  6. Xia R, Zong C, Li S. Ensemble of feature sets and classification algorithms for sentiment classification. Information Sciences. 2011;181(6):1138–1152. Available from: https://dx.doi.org/10.1016/j.ins.2010.11.023
  7. Tan S, Zhang J. An Empirical Study of Sentiment Analysis for Chinese Documents. Expert Systems with Applications. 2008;34(4):2622–2629. Available from: https://doi.org/10.1016/j.eswa.2007.05.028
  8. Dhande LL, Patnaik PGK. Analyzing Sentiment of Movie Review Data using Naive Bayes Neural Classifier. Int J Emerg Trends Technol Comput Sci [Internet]. 2014;3(4):313–333. Available from: https://pdfs.semanticscholar.org/a030/b72c0546a3c832627855d42bccc3f6819e75.pdf
  9. Bhatt R, Gupta P. Sentiment Analysis. Indian Journal of Science and Technology. 2019;12(41):1–6. Available from: https://dx.doi.org/10.17485/ijst/2019/v12i41/145556
  10. Hira ZM, Gillies DF. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data. Advances in Bioinformatics. 2015;2015:1–13. Available from: https://dx.doi.org/10.1155/2015/198363
  11. Yap BW, Rani KA, Rahman HAA, Fong S, Khairudin Z, Abdullah NN. Lecture Notes in Electrical Engineering An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. 2014.
  12. Wang G, Sun J, Ma J, Xu K, Gu J. Sentiment classification: The contribution of ensemble learning. Decision Support Systems. 2014;57(1):77–93. Available from: https://dx.doi.org/10.1016/j.dss.2013.08.002
  13. Dedhia C, Ramteke J. Ensemble Model for Twitter Sentiment Analysis. In: Proceedings of the International Conference on Inventive Systems and Control, ICISC 2017. Institute of Electrical and Electronics Engineers Inc. 2017.
  14. Singh V, Saxena P, Singh S, Rajendran S. Opinion Mining and Analysis of Movie Reviews. Indian Journal of Science and Technology. 2017;10(19):1–6. Available from: https://doi.org/10.17485/ijst/2017/v10i19/112756
  15. Moraes R, Valiati JF, Neto WPG. Document-Level Sentiment Classification: An Empirical Comparison between SVM and ANN. Expert Systems with Applications. 2013;40(2):621–633. Available from: https://doi.org/10.1016/j.eswa.2012.07.059
  16. Julie MD, Kannan B. Attribute reduction and missing value imputing with ANN: prediction of learning disabilities. Neural Computing and Applications. 2012;21(7):1757–1763. Available from: https://dx.doi.org/10.1007/s00521-011-0619-1


© 2020 Kalaivani & Selvi.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.