• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 22, Pages: 2245-2263

Review Article

Macronutrient effect on biomass of Microalgae in biofuel production: A review

Received Date:07 April 2020, Accepted Date:09 June 2020, Published Date:28 June 2020


Objectives: This review is focused on the effect of macronutrients (nitrogen, carbon and phosphorus) on biomass production of microalgae especially concerned with biofuel. Methodology: The keyword search included "microalgae cultivation", "nitrogen sources", "phosphorus sources", "organic carbon", "biodiesel", "biofuel", "carbon dioxide", "inorganic carbon", "macronutrient deprivation", "macronutrient limitation", "lipid" and "organic waste" to search the published journals in ScienceDirect, Scopus, Springer, and Google Scholar. The search was performed from December 2019 until Mac 2020 to collect all the journals and books that are published between 2006 and 2020. The effect of each macronutrient (nitrogen, carbon and phosphorus) on microalgal growth of the control and the samples were compared using biomass productivity, concentration and biochemical content in each published article. Findings: Review shows that nitrogen has more pernicious effect than other macronutrients on most microalgal growth and lipid production. The concentrations and types of macronutrients have remarkable effects on the growth of microalgae; hence these criteria must be chosen scrupulously to achieve the desired biomass and metabolite production. In order to improve the biomass and biochemical productivity in concomitant with the cost reduction, replacement of cheap organic waste, genetic engineering of microalgae and two-stage hybrid system have been suggested to simultaneously maximize the biomass and biochemical production. The future research should focus on other biochemical contents such as carbohydrates, proteins and pigment to achieve the biorefinery context which can increase the profit. Besides, economic factor such as factorial design should be included in the future research to obtain the best combined factors with the maximum profit and minimal cost.

Keywords: Microalgae; biomass; macronutrient; biofuel


  1. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae biorefinery: High value products perspectives. Bioresource Technology. 2017;229:53–62. Available from: https://dx.doi.org/10.1016/j.biortech.2017.01.006
  2. Fazal T, Mushtaq A, Rehman F, Khan AU, Rashid N, Farooq W, et al. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews. 2018;82:3107–3126. Available from: https://dx.doi.org/10.1016/j.rser.2017.10.029
  3. Wu JY, Lay CH, Chen CC, Wu SY. Lipid accumulating microalgae cultivation in textile wastewater: Environmental parameters optimization. Journal of the Taiwan Institute of Chemical Engineers. 2017;79:1–6. Available from: https://dx.doi.org/10.1016/j.jtice.2017.02.017
  4. Singh SK, Sundaram S, Sinha S, Rahman MA, Kapur S. Recent advances in CO2uptake and fixation mechanism of cyanobacteria and microalgae. Critical Reviews in Environmental Science and Technology. 2016;46(16):1297–1323. Available from: https://dx.doi.org/10.1080/10643389.2016.1217911
  5. Rashid N, Selvaratnam T, Park WK. Resource recovery from waste streams using microalgae: opportunities and threats. In: Microalgae Cultivation for Biofuels Production. (pp. 337-351) Elsevier Inc: United State. 2020.
  6. Jerez CG, Malapascua JR, Sergejevová M, Figueroa FL, Masojídek J. Effect of Nutrient Starvation under High Irradiance on Lipid and Starch Accumulation in Chlorella fusca (Chlorophyta) Marine Biotechnology. 2016;18(1):24–36. Available from: https://dx.doi.org/10.1007/s10126-015-9664-6
  7. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology. 2014;152:292–298. Available from: https://dx.doi.org/10.1016/j.biortech.2013.10.092
  8. Liu J, Mukherjee J, Hawkes JJ, Wilkinson SJ. Optimization of lipid production for algal biodiesel in nitrogen stressed cells ofDunaliella salinausing FTIR analysis. Journal of Chemical Technology & Biotechnology. 2013;88(10):1807–1814. Available from: https://dx.doi.org/10.1002/jctb.4027
  9. Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. Differential Effects of Nitrogen Limitation on Photosynthetic Efficiency of Photosystems I and II in Microalgae. Plant Physiology. 1996;110(2):689–696. Available from: https://dx.doi.org/10.1104/pp.110.2.689
  10. Safdar W, Shamoon M, Zan X, Haider J, Sharif HR, Shoaib M, et al. Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration. AMB Express. 2017;7:85–99. Available from: https://dx.doi.org/10.1186/s13568-017-0384-3
  11. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal. 2008;54(4):621–639. Available from: https://dx.doi.org/10.1111/j.1365-313x.2008.03492.x
  12. Yang ZK, Zheng JW, Niu YF, Yang WD, Liu JS, Li HY. Systems-level analysis of the metabolic responses of the diatomPhaeodactylum tricornutumto phosphorus stress. Environmental Microbiology. 2014;16(6):1793–1807. Available from: https://dx.doi.org/10.1111/1462-2920.12411
  13. Necla Altın T, Kutluk B, Uyar N, Kapucu. Effect of different nitrogen sources on the growth and lipid accumulation of Chlorella variabilis. Journal of Applied Biological Sciences. 2018;12:38–40.
  14. Shrivastav A, Mishra SK, Suh WI, Farooq W, Moon M, Kim TH, et al. Characterization of newly isolated oleaginous microalga Monoraphidium sp. for lipid production under different conditions. Algal Research. 2015;12:289–294. Available from: https://dx.doi.org/10.1016/j.algal.2015.08.015
  15. Li Y, Horsman M, Wang B, Wu N, Lan CQ. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology. 2008;81(4):629–636. Available from: https://dx.doi.org/10.1007/s00253-008-1681-1
  16. Wu LF, Chen PC, Lee CM. The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration & Biodegradation. 2013;85:506–510. Available from: https://dx.doi.org/10.1016/j.ibiod.2013.05.016
  17. Zhan J, Hong Y, Hu H. Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ. Journal of Microbiology and Biotechnology. 2016;26(7):1290–1302. Available from: https://dx.doi.org/10.4014/jmb.1512.12074
  18. Zhu L, Li S, Hu T, Nugroho YK, Yin Z, Hu D, et al. Effects of nitrogen source heterogeneity on nutrient removal and biodiesel production of mono- and mix-cultured microalgae. Energy Conversion and Management. 2019;201:112144. Available from: https://dx.doi.org/10.1016/j.enconman.2019.112144
  19. Miranda CT, Lima DVNd, Atella GC, Aguiar PFd, Azevedo SMFO. Optimization of Nitrogen, Phosphorus and Salt for Lipid Accumulation of Microalgae: Towards the Viability of Microalgae Biodiesel. Natural Science. 2016;08(12):557–573. Available from: https://dx.doi.org/10.4236/ns.2016.812055
  20. Bajwa K, Narsi R, Bishnoi A, Kirrollia, Selvan ST. A new lipid rich microalgal sp Scenedesmus dimorphus isolated: Nile red staining and effect of carbon, nitrogen sources on its physio-biochemical components. European Journal of Sustainable Development Research. 2018;2:143–152.
  21. Wang X, Shen Z, Miao X. Nitrogen and hydrophosphate affects glycolipids composition in microalgae. Scientific Reports. 2016;6(1):1–9. Available from: https://dx.doi.org/10.1038/srep30145
  22. Gupta N, Khare P, Singh DP. Nitrogen-dependent metabolic regulation of lipid production in microalga Scenedesmus vacuolatus. Ecotoxicology and Environmental Safety. 2019;174:706–713. Available from: https://dx.doi.org/10.1016/j.ecoenv.2019.03.035
  23. Wang S, Zheng L, Han X, Yang B, Li J, Sun C. Lipid accumulation and CO2 utilization of two marine oil-rich microalgal strains in response to CO2 aeration. Acta Oceanologica Sinica. 2018;37(2):119–126. Available from: https://dx.doi.org/10.1007/s13131-018-1171-y
  24. Liu X, Wang K, Wang J, Zuo J, Peng F, Wu J, et al. Carbon dioxide fixation coupled with ammonium uptake by immobilized Scenedesmus obliquus and its potential for protein production. Bioresource Technology. 2019;289:121685. Available from: https://dx.doi.org/10.1016/j.biortech.2019.121685
  25. Singh SK, Sundaram S, Sinha S, Rahman MA, Kapur S. Recent advances in CO2uptake and fixation mechanism of cyanobacteria and microalgae. Critical Reviews in Environmental Science and Technology. 2016;46(16):1297–1323. Available from: https://dx.doi.org/10.1080/10643389.2016.1217911
  26. Mondal M, Khanra S, Tiwari ON, Gayen K, Halder GN. Role of carbonic anhydrase on the way to biological carbon capture through microalgae-A mini review. Environmental Progress & Sustainable Energy. 2016;35(6):1605–1615. Available from: https://dx.doi.org/10.1002/ep.12394
  27. Ghosh A, Kiran B. Carbon Concentration in Algae: Reducing CO 2 From Exhaust Gas. Trends in Biotechnology. 2017;35(9):806–808. Available from: https://dx.doi.org/10.1016/j.tibtech.2017.05.003
  28. Baba M, Shiraiw Y. High-CO2 response mechanisms in microalgae. Advances in Photosynthesis-Fundamental Aspects. N.Najafpour. 2012;p. 299–320.
  29. Patel AK, Joun JM, Hong ME, Sim SJ. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource Technology. 2019;282:245–253. Available from: https://dx.doi.org/10.1016/j.biortech.2019.03.024
  30. Qiao H, Wang G. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chinese Journal of Oceanology and Limnology. 2009;27(4):762–768. Available from: https://dx.doi.org/10.1007/s00343-009-9216-x
  31. Bhatnagar A, Chinnasamy S, Singh M, Das KC. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy. 2011;88(10):3425–3431. Available from: https://dx.doi.org/10.1016/j.apenergy.2010.12.064
  32. Danesh A, Zilouei H, Farhadian O. The effect of glycerol and carbonate on the growth and lipid production of Isochrysis galbana under different cultivation modes. Journal of Applied Phycology. 2019;31(6):3411–3420. Available from: https://dx.doi.org/10.1007/s10811-019-01888-5
  33. Zhang W, Zhang P, Sun H, Chen M, Lu S, Li P. Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa. Bioresource Technology. 2014;173:52–58. Available from: https://dx.doi.org/10.1016/j.biortech.2014.09.084
  34. Gim GH, Kim JK, Kim HS, Kathiravan MN, Yang H, Jeong SH, et al. Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions. Bioprocess and Biosystems Engineering. 2014;37(2):99–106. Available from: https://dx.doi.org/10.1007/s00449-013-0920-8
  35. Bashir KMI, Mansoor S, Kim NR, Grohmann FR, Shah AA, Cho MG. Effect of organic carbon sources and environmental factors on cell growth and lipid content of Pavlova lutheri. Annals of Microbiology. 2019;69(4):353–368. Available from: https://dx.doi.org/10.1007/s13213-018-1423-2
  36. Tanner W. The chlorella hexose/H+-symporters. International Review of Cytology. 2000;200.
  37. Chai S, Shi J, Huang T, Guo Y, Wei J, Guo M, et al. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLOS ONE. 2018;13(7):e0199873. Available from: https://dx.doi.org/10.1371/journal.pone.0199873
  38. Xie M, Qiu Y, Song C, Qi Y, Li Y, Kitamura Y. Optimization of Chlorella sorokiniana cultivation condition for simultaneous enhanced biomass and lipid production via CO 2 fixation. Bioresource Technology Reports. 2018;2:15–20. Available from: https://dx.doi.org/10.1016/j.biteb.2018.03.006
  39. Huang YT, Su CP. High lipid content and productivity of microalgae cultivating under elevated carbon dioxide. International Journal of Environmental Science and Technology. 2014;11(3):703–710. doi: 10.1007/s13762-013-0251-y
  40. Ji MK, Yun HS, Hwang JH, Salama ES, Jeon BH, Choi J. Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production. Environmental Technology. 2017;38(16):2085–2092. Available from: https://dx.doi.org/10.1080/09593330.2016.1246145
  41. Sengmee D, Cheirsilp B, Suksaroge TT, Prasertsan P. Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source. International Journal of Hydrogen Energy. 2017;42(4):1970–1976. Available from: https://dx.doi.org/10.1016/j.ijhydene.2016.10.089
  42. Gim GH, Ryu J, Kim MJ, Kim PI, Kim SW. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions. Journal of Industrial Microbiology & Biotechnology. 2016;43(5):605–616. doi: 10.1007/s10295-016-1741-y
  43. Patidar SK, Mitra M, George B, Soundarya R, Mishra S. Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode. Bioresource Technology. 2014;172:32–40. Available from: https://dx.doi.org/10.1016/j.biortech.2014.08.070
  44. He Y, Hong Y, Liu X, Zhang Q, Liu P, Wang S. Influences of carbon and nitrogen sources and metal ions on the heterotrophic culture of Scenedesmus sp. LX1. Environmental Science and Pollution Research. 2019;26:13381–13389. Available from: https://dx.doi.org/10.1007/s11356-019-04807-w
  45. Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, et al. The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology. 2011;91(3):835–844. Available from: https://dx.doi.org/10.1007/s00253-011-3399-8
  46. Ru F, Ying WH, Feng PG. A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. African Journal of Microbiology Research. 2012;6.
  47. Chou HH, Su HY, Song XD, Chow TJ, Chen CY, Chang JS, et al. Isolation and characterization of Chlorella sp. mutants with enhanced thermo- and CO2 tolerances for CO2 sequestration and utilization of flue gases. Biotechnology for Biofuels. 2019;12(1):251–265. Available from: https://dx.doi.org/10.1186/s13068-019-1590-9
  48. Mohsenpour SF, Willoughby N. Effect of CO 2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass and Bioenergy. 2016;85:168–177. Available from: https://dx.doi.org/10.1016/j.biombioe.2015.12.002
  49. Yu SJ, Hu H, Zheng H, Wang YQ, Pan SB, Zeng RJ. Effect of different phosphorus concentrations on biodiesel production from Isochrysis zhangjiangensis under nitrogen sufficiency or deprivation condition. Applied Microbiology and Biotechnology. 2019;103(12):5051–5059. Available from: https://dx.doi.org/10.1007/s00253-019-09814-y
  50. El-Kassas HY. Growth and fatty acid profile of the marine microalga Picochlorum Sp. grown under nutrient stress conditions. The Egyptian Journal of Aquatic Research. 2013;39(4):233–239. doi: 10.1016/j.ejar.2013.12.007
  51. Huang B, Marchand J, Thiriet-Rupert S, Carrier G, Saint-Jean B, Lukomska E, et al. Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta) Algal Research. 2019;40:101506. Available from: https://dx.doi.org/10.1016/j.algal.2019.101506
  52. Alipanah L, Winge P, Rohloff J, Najafi J, Brembu T, Bones AM. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLOS ONE. 2018;13(2):e0193335. Available from: https://dx.doi.org/10.1371/journal.pone.0193335
  53. Mühlroth A, Winge P, El Assimi A, Jouhet J, Maréchal E, Hohmann-Marriott MF, et al. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga. Plant Physiology. 2017;175(4):1543–1559. doi: 10.1104/pp.17.00621
  54. Liang K, Zhang Q, Gu M, Cong W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. Journal of Applied Phycology. 2013;25(1):311–318. Available from: https://dx.doi.org/10.1007/s10811-012-9865-6
  55. José P, Lovio-Fragoso C, Hayano-Kanashiro, José A. López-Elías. Effect of different phosphorus concentrations on growth and biochemical composition of Chaetoceros muelleri. Latin American Journal of Aquatic Research. 2019;47:361–366.
  56. Li Q, Fu L, Wang Y, Zhou D, Rittmann BE. Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology. 2018;268:266–270. Available from: https://dx.doi.org/10.1016/j.biortech.2018.07.148
  57. Wang X, Shen Z, Miao X. Nitrogen and hydrophosphate affects glycolipids composition in microalgae. Scientific Reports. 2016;6(1):1–9. Available from: https://dx.doi.org/10.1038/srep30145
  58. Rasdi NW, Qin JG. Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. Journal of Applied Phycology. 2015;27(6):2221–2230. doi: 10.1007/s10811-014-0495-z
  59. Su G, Jiao K, Li Z, Guo X, Chang J, Ndikubwimana T, et al. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess and Biosystems Engineering. 2016;39(7):1129–1136. doi: 10.1007/s00449-016-1589-6
  60. Bulut Mutlu Y, Işık O, Uslu L, Koç K, Durmaz Y. The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae) African Journal of Biotechnology. 2011;10.
  61. Fu L, Li Q, Yan G, Zhou D, Crittenden JC. Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Biotechnology for Biofuels. 2019;12(1):1–9. Available from: https://dx.doi.org/10.1186/s13068-019-1458-z
  62. Yang L, Tan X, Li D, Chu H, Zhou X, Zhang Y, et al. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresource Technology. 2015;181:54–61. Available from: https://dx.doi.org/10.1016/j.biortech.2015.01.043
  63. Moreno-Garcia L, Gariépy Y, Barnabé S, Raghavan GSV. Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters. Algal Research. 2019;41:101521. Available from: https://dx.doi.org/10.1016/j.algal.2019.101521
  64. Lau KY, Pleissner D, Lin CSK. Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresource Technology. 2014;170:144–151. Available from: https://dx.doi.org/10.1016/j.biortech.2014.07.096
  65. Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, et al. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System. Frontiers in Energy Research. 2016;4:1–10. Available from: https://dx.doi.org/10.3389/fenrg.2016.00029
  66. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, et al. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal. 2013;78:1–10. Available from: https://dx.doi.org/10.1016/j.bej.2013.03.006
  67. Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition. 2019;p. 1–29. Available from: https://dx.doi.org/10.1080/10408398.2019.1672137
  68. Fernández MdlÁ, Boiteux J, Espino M, Gomez FJV, Silva MF. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Analytica Chimica Acta. 2018;1038:1–10. Available from: https://dx.doi.org/10.1016/j.aca.2018.07.059
  69. Sicaire AG, Vian M, Fine F, Joffre F, Carré P, Tostain S, et al. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing. International Journal of Molecular Sciences. 2015;16(12):8430–8453. doi: 10.3390/ijms16048430
  70. Du Y, Schuur B, Kersten SRA, Brilman DWF. Opportunities for switchable solvents for lipid extraction from wet algal biomass: An energy evaluation. Algal Research. 2015;11:271–283. Available from: https://dx.doi.org/10.1016/j.algal.2015.07.004
  71. Griffiths MJ, Dicks RG, Richardson C, Susan TL, Harrison. Advantages and challenges of microalgae as a source of oil for biodiesel. In: SM, MG., eds. Biodiesel - Feedstocks and Processing Technologies. (pp. 177-196) INTECH Open Access Publisher. 2011.
  72. Nesamma AA, Shaikh KM, Jutur PP. KS(HoMM., ed. Genetic engineering of microalgae for production of value-added ingredients. (pp. 405-414) Elsevier Inc. 2015.
  73. Schüler LM, Schulze PSC, Pereira H, Barreira L, León R, Varela J. Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae. Algal Research. 2017;25:263–273. doi: 10.1016/j.algal.2017.05.025
  74. Chen CY, Kao AL, Tsai ZC, Chow TJ, Chang HY, Zhao XQ, et al. Expression of type 2 diacylglycerol acyltransferse geneDGTT1fromChlamydomonas reinhardtiienhances lipid production inScenedesmus obliquus. Biotechnology Journal. 2016;11(3):336–344. Available from: https://dx.doi.org/10.1002/biot.201500272
  75. Kang NK, Kim EK, Sung M, Kim YU, Jeong B, Chang YK. Increased biomass and lipid production by continuous cultivation ofNannochloropsis salinatransformant overexpressing a bHLH transcription factor. Biotechnology and Bioengineering. 2019;116(3):555–568. Available from: https://dx.doi.org/10.1002/bit.26894
  76. Chou HH, Su HY, Song XD, Chow TJ, Chen CY, Chang JS, et al. Isolation and characterization of Chlorella sp. mutants with enhanced thermo- and CO2 tolerances for CO2 sequestration and utilization of flue gases. Biotechnology for Biofuels. 2019;12(1):251. Available from: https://dx.doi.org/10.1186/s13068-019-1590-9
  77. Chew KW, Chia SR, Show PL, Yap YJ, Ling TC, Chang JS. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers. 2018;91:332–344. doi: 10.1016/j.jtice.2018.05.039
  78. Remmers IM, Hidalgo-Ulloa A, Brandt BP, Evers WAC, Wijffels RH, Lamers PP. Continuous versus batch production of lipids in the microalgae Acutodesmus obliquus. Bioresource Technology. 2017;244:1384–1392. Available from: https://dx.doi.org/10.1016/j.biortech.2017.04.093
  79. Martín LA, Popovich CA, Martinez AM, María C, Damiani PI, Leonardi. Oil assessment of Halamphora coffeaeformis diatom growing in a hybrid two-stage system for biodiesel production. Renewable Energy. 2019;92:127–135.
  80. Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, et al. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System. Frontiers in Energy Research. 2016;4(29):1–10. doi: 10.3389/fenrg.2016.00029
  81. Álvarez-Díaz PD, Ruiz J, Arbib Z, Barragán J, Garrido-Pérez C, Perales JA. Lipid Production of Microalga Ankistrodesmus falcatus Increased by Nutrient and Light Starvation in a Two-Stage Cultivation Process. Applied Biochemistry and Biotechnology. 2014;174(4):1471–1483. Available from: https://dx.doi.org/10.1007/s12010-014-1126-5
  82. Gorain PC, Bagchi SK, Mallick N. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environmental Technology. 2013;34(13-14):1887–1894. Available from: https://dx.doi.org/10.1080/09593330.2013.812668


 © 2020 Chai, Tan, Wong. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.