• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 40, Pages: 2066-2076

Original Article

Magnetohydrodynamic Micropolar Fluid Squeeze Film Lubrication between Stepped Porous Parallel Plates

Received Date:07 June 2022, Accepted Date:17 August 2022, Published Date:29 October 2022

Abstract

Objectives: The primary goal of this paper is to study the influence of MHD and micropolar fluid on the squeeze film lubrication between stepped porous parallel plates. Method: The non-Newtonian micropolar fluid MHD Reynolds type equation is derived by considering the flow of micropolar fluid in the porous matrix as described by Darcy’s law, as well as microstructure additives and magnetic effects associated with the magnetization of the fluid. The numerical solutions are presented graphically for the MHD squeeze film characteristics for various values of coupling number parameter, characteristic material length, and magnetic Hartmann number. Findings: According to the results, the micropolar fluid and the magnetic effects significantly influence the squeeze film characteristics. Comparing the MHD micropolar fluid impact on the squeeze film lubrication with the corresponding Newtonian and non-magnetic cases, we observe that there is a significant increase in the approaching time and the load-carrying capability. The increase in the step height decreases the squeezing film time. Novelty: The original research was conducted on the magneto-hydrodynamic micropolar fluid squeeze film lubrication between stepped porous parallel plates which has not been studied so far. The effect of applied magnetic field is to enhance the load carrying capacity and delayed time of approach which are the most desirable characteristics for improving the bearing performance.

Keywords: Squeeze Film; Stepped plates; Magnetohydrodynamic; Porous; Micropolar

References

  1. Hays DF. Squeeze Films for Rectangular Plates. Journal of Basic Engineering. 1963;85(2):243–246. Available from: https://doi.org/10.1115/1.3656568.
  2. Wu H. An Analysis of the Squeeze Film Between Porous Rectangular Plates. Journal of Lubrication Technology. 1972;94(1):64–68. Available from: https://doi.org/10.1115/1.3451637
  3. Singh P, Radhakrishnan V, Narayan KA. Squeezing flow between parallel plates. Ingenieur-Archiv. 1990;60(4):274–281. Available from: https://doi.org/10.1007/BF00577864
  4. Naduvinamani NB, Apparao S, Gundayya HA, Biradar SN. Effect of Pressure Dependent Viscosity on Couple Stress Squeeze Film Lubrication between Rough Parallel Plates. Tribology Online. 2015;10(1):76–83. Available from: https://doi.org/10.2474/trol.10.76
  5. Hanumagowda BN, Shivakumar HM, Raju BT, Kumar JS. Combined Effect of Pressure-Dependent Viscosity and Micropolar Fluids on Squeeze Film Circular Stepped Plates. International Journal of Mathematics Trends and Technology. 2016;37:175–183. Available from: https://doi.org/10.14445/22315373/IJMTT-V37P523
  6. Madalli VS, Patil S, Hiremath A, Kudenatti R. Analysis of the viscosity dependent parameters of couple stress fluid in porous parallel plates. Industrial Lubrication and Tribology. 2018;70(6):1086–1093. Available from: https://doi.org/10.1108/ILT-10-2017-0315
  7. Anagod RR, Kumar JS, Hanumagowda BN. Squeeze film behavior of rough elliptical plates with micropolar fluids. ARPN Journal of Engineering and Applied Sciences. 2018;13(23). Available from: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7434.pdf
  8. Jahan N, Hanumagowda BN, Salma A, Shivakumar HM. Combined effect of piezo-viscous dependency and Couple Stresses on Squeeze-Film Characteristics of Rough Annular Plates. Journal of Physics: Conference Series. 2018;1000:012082. Available from: https://doi.org/10.1088/1742-6596/1000/1/012082
  9. Goud BS, Reddy YD, Alshehri NA, Jamshed W, Safdar R, Eid MR, et al. Numerical Case Study of Chemical Reaction Impact on MHD Micropolar Fluid Flow Past over a Vertical Riga Plate. Materials. 2022;15(12):4060. Available from: https://doi.org/10.3390/ma15124060.
  10. Eringen AC. Theory of Micropolar Fluids. Indiana University Mathematics Journal. 1966;16(1):1–18. Available from: https://www.jstor.org/stable/24901466
  11. Hughes WF. Magnetohydrodynamic lubrication and its application to liquid metals. Industrial Lubrication and Tribology. 1963;15(3):125–133. Available from: https://doi.org/10.1108/eb052722
  12. Kuzma DC, Maki ER, Donnelly RJ. The magnetohydrodynamic squeeze film. Journal of Fluid Mechanics. 1964;19(3):395–400. Available from: https://doi.org/10.1017/S0022112064000805
  13. Hamza EA. The Magnetohydrodynamic Squeeze Film. Journal of Tribology. 1988;110(2):375–377. Available from: https://doi.org/10.1115/1.3261636
  14. Jaw-Ren L, Li-Ming C, Chi-Ren H, Rong-Fang L. Magneto-Hydrodynamic Non-Newtonian Curved Circular Squeeze Films. Journal of Marine Science and Technology. 2014;22(5):566–571. Available from: https://doi.org/10.6119/JMST-013-0716-2
  15. Islam S, Khan A, Deebani W, Bonyah E, Alreshidi NA, Shah Z. Influences of Hall current and radiation on MHD micropolar non-Newtonian hybrid nanofluid flow between two surfaces. AIP Advances. 2020;10(5):055015. Available from: https://doi.org/10.1063/1.5145298
  16. Halambi B, Hanumagowda B. Effect of Hydromagnetic Squeeze Film Lubrication Of Micropolar Fluid Between Two Elliptical Plates. International Journal of Mechanical Engineering and Technology (IJMET). 2018;9(8):939–947. Available from: http://iaeme.com/Home/issue/IJMET?Volume=9&Issue=8
  17. Zahir S, Meshal S, Abdullah D, Poom K, Thounthong P, Saeed I. Impact of Cattaneo-Christov heat flux on non-isothermal convective micropolar fluid flow in a hall MHD generator system. J Materi Res Technol. 2020;9(3):5452–5462. Available from: https://doi.org/10.1016/j.jmrt.2020.03.071
  18. Biradar T, Hanumagowda BN, Suresh B. Biradar Kashinath, Patil Vishal, Effect of MHD and couple stress on squeeze film characteristics between porous curved annular circular plates. International Journal of Mechanical and Production Engineering Research and Development. 2020;10(3):8535–8546. Available from: http://www.tjprc.org/publishpapers/2-67-1601018265-811IJMPERDJUN2020811.pdf
  19. Qui-Hong S, Tayyaba S, Mushtaq M, Ijaz MK, Zahir S. Kumam Poom, Modelling and numerical computation for flow of micropolar fluid towards an exponential curved surface: a keller box method. Scientific reports. 2021;11(16351). Available from: https://doi.org/10.1038/s41598-021-95859-x
  20. Agarwal V, Singh B, Kumari A, Jamshed W, Nisar KS, Almaliki AH, et al. Steady Magnetohydrodynamic Micropolar Fluid Flow and Heat and Mass Transfer in Permeable Channel with Thermal Radiation. Coatings. 2022;12(1):11. Available from: https://doi.org/10.3390/coatings12010011
  21. Ullah H, Shoaib M, Akbar A, Raja MAZ, Islam S, Nisar KS. Neuro-Computing for Hall Current and MHD Effects on the Flow of Micro-Polar Nano-Fluid Between Two Parallel Rotating Plates. Arabian Journal for Science and Engineering. 2022;24:1–21. Available from: https://doi.org/10.1007/s13369-022-06925-z

Copyright

© 2022 Naduvinamani & Angadi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.