• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 3, Pages: 97-106

Original Article

Mass Sphering Approach for Three-Dimensional Reconstruction of Brain Tumor using MRI

Received Date:19 October 2021, Accepted Date:12 December 2021, Published Date:31 January 2022


Objective: The objective of the research work is to reconstruct the brain tumor three-dimensionally with high degree of accuracy. Methods: This study describes 3D reconstruction of brain tumor using Mass Sphering Approach (MSA) algorithm. 39 weighted features are extracted from the non-tumor and tumor pixels. These weighted features are used to train the Support Vector Machine (SVM) algorithm. Number of training samples taken to train SVM algorithm are 268 and the testing sample are 64. The complete MR image set of a subject (64 axial slices) are detected for tumor pixels and these slices are concatenated to get volumetric tumor information. Findings: 5-step MSA algorithm is proposed which includes filtering, segmentation, classification, optimization and reconstruction. MR images are subjected to Rician noise which can be removed by a simple correction scheme, initiated to change the bias due to the Rician distribution of the noisy magnitude data. The filtered MR image slices are segmented and classified to detect the tumor areas and the tumor pixels are subjected for 3D reconstruction. The improvement in performance of MSA is depicted by comparing the algorithm with traditional SVM. Novelty: The accuracy achieved in detecting glioma and glioblastoma using MSA are 95.24% and 99% respectively which is highly remarkable.

Keywords: Glioma; voxel; Magnetic Resonance; Classification; Immune; Reconstruction


  1. Amin J, Sharif M, Haldorai A. Brain tumor detection and classification using machine learning: a comprehensive survey. Complex & Intelligent Systems. 2021. doi: 10.1007/s40747-021-00563-y
  2. Biratu ES, Schwenker F, Ayano YM, Debelee TG. A Survey of Brain Tumor Segmentation and Classification Algorithms. Journal of Imaging. 2021;7(9):179. doi: 10.3390/jimaging7090179
  3. Ahmadi M, Sharifi A, Hassantabar S, Enayati S. QAIS-DSNN: Tumor Area Segmentation of MRI Image with Optimized Quantum Matched-Filter Technique and Deep Spiking Neural Network. BioMed Research International. 2021;2021:16. doi: 10.1155/2021/6653879
  4. Nalepa J, Kawulok M. Selecting training sets for support vector machines: a review. Artificial Intelligence Review. 2019;52:857–900. Available from: https://doi.org/10.1007/s10462-017-9611-1
  5. Guo L, Li Y;, Miao D, Zhao L, Yan W, Shen X. 3-D Reconstruction of Encephalic Tissue in MR Images Using Immune Sphere-Shaped SVMs. IEEE Transactions on Magnetics. 2011;47(5):870–873. doi: 10.1109/tmag.2010.2072776
  6. Edward JF, Zappulla R, Yang WC. Color 3-D Imaging of Normal and Pathologic Intracranial Structures. Computer Graphics and Applications IEEE. 1984;(4) 9–14. Available from: https://ieeexplore.ieee.org/abstract/document/4055913
  7. Abdelazeem R, Youssef D, El-Azab J, Hassab-Elnaby S, Agour M. Three-dimensional visualization of brain tumor progression based accurate segmentation via comparative holographic projection. PLOS ONE. 2020;15(7). Available from: https://doi.org/10.1371/journal.pone.0236835
  8. Fawzi A, Achuthan A, Belaton B. Brain Image Segmentation in Recent Years: A Narrative Review. Brain Sciences. 2021;11(8):1055. doi: 10.3390/brainsci11081055
  9. Clark AE, Biffi B, Sivera R, Dall'Asta A, Fessey F, Wong T, et al. Developing and testing an algorithm for automatic segmentation of the fetal face from three-dimensional ultrasound images. Royal Society Open Science. 2020;7(11):201342. doi: 10.1098/rsos.201342
  10. Chaudhury S, Rakhra M, Memon N, Sau K, Ayana MT. Breast Cancer Calcifications: Identification Using a Novel Segmentation Approach. Computational and Mathematical Methods in Medicine. 2021;2021:9905808. doi: 10.1155/2021/9905808
  11. Chen C, Chen Q, Huaqi Q, Giacomo T, Jinming D, Wenjia B, et al. Deep Learning for Cardiac Image Segmentation: A Review. Frontiers in Cardiovascular Medicine. 2020;7. Available from: https://doi.org/10.3389/fcvm.2020.00025
  12. Fan L, Zhang F, Fan H, Zhang C. Brief review of image denoising techniques. Visual Computing for Industry, Biomedicine, and Art. 2019;2(1):7. doi: 10.1186/s42492-019-0016-7
  13. Pal C, Das P, Chakrabarti A, Ghosh R. Rician noise removal in magnitude MRI images using efficient anisotropic diffusion filtering. International Journal of Imaging Systems and Technology. 2017;27(3):248–264. doi: 10.1002/ima.22230


© 2022 Preetha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.