• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 3, Pages: 258-269

Original Article

Seasonal Trend Analysis of Major Air Pollutant (PM2:5 and PM10) Concentration in Visakhapatnam During 2020 – 2022: A Case Study

Received Date:08 October 2023, Accepted Date:22 December 2023, Published Date:13 January 2024


Objective: The main objective of the present study is to analyze the seasonal variations of major particulate air pollutants (PM2.5 and PM10) from January 2020 to December 2022 in the industrially developed Visakhapatnam City and its comparison with previous existing studies from January 2018 - December 2020. Methods: The real-time daily mass concentrations of air pollutants in Visakhapatnam recorded by the Central Pollution Control Board (CPCB) are collected for the present study. The monthly average observations of pollutants such as PM2.5, PM10, and PM2.5/PM10 in each season are considered for the present study, and pollutants trends are studied from January 2020 - December 2022. The fine particles below 100μm (RSPM) and coarse particles > 100μm (TSPM) are treated as primary pollutants and pollutant concentration is determined based on prevailing meteorological and topographic factors. In the present study, the pollutant intensity is analyzed using the Pearson correlation coefficient for various seasons. Similarly, statistical analysis is also implemented on particulate air pollutants (PM2.5 and PM10) from January 2020 to December 2022. Findings: From Table 1 PM2.5 levels fall within the range of 16 - 96 μg/m3 and the minimum PM2.5 level is in April 2020 and maximum in December 2020. According to AQI standards, moderate pollution indicates the fall of the PM10 levels within the range of 53-196 μg/m3 during 2020-2022 minimum in April 2020 and maximum in December 2020. The present study recorded high pollutants of PM2.5 and PM10 in Visakhapatnam in the winter season during 2020-2022. The obtained result reveals that high PM2.5 and PM10 mass concentrations in winter exceed the NAAQS limit and better air quality is observed especially in summer and during monsoon season. The ratio between PM2.5 and PM10 is minimal in May 2020 and almost similar maximum values from November - 2020 to December 2020. This indicates that PM10 concentration is maximum in May 2020 and minimum during November - 2020 to December 2020. The ratio between PM2.5 and PM10 is maximum in November 2021 and minimum in September - 2021. This indicates that PM10 concentration is less in November 2021 and maximum in September – 2021. The ratio between PM2.5 and PM10 is maximum in December 2022 and minimum in April - 2022. This indicates that PM10 concentration is less in December 2022 and maximum in April – 2022. The Pearson correlation coefficient between PMs over the period 2020-2022 is especially high in the summer season (r = 0.9711) and is negative (r= -0.7039) in the winter season which indicates that traffic-related emissions are the main sources of pollution at this site. Novelty: Air pollutants from January 2018 - December 2020 for nine monitoring stations in Visakhapatnam were observed by numerous authors and concluded that maximum PM2.5 levels fall within the range of 61-90 μg/m3. Similarly, PM10 falls within the range of 101-250 μg/m3 in 2019 and 2020. The maximum PM10 concentration was 195μg/m3 in December 2020 and the minimum value was 53μg/m3 in April 2020. The decrease in PM10 concentration is probably due to the prevailing pandemic situation in 2020. The major harmful air pollutant is particulate matter (PM10 and PM2.5) in Visakhapatnam city due to rapid industrialization and its variations are analyzed during January 2020 - December 22. The data analyzed from CPCB reveals that the maximum PM10 concentration was 166.5 μg/m3 in January 2021 and the minimum value was 74.92 μg/m3 in May 2021. The maximum PM2.5 concentration is 83.38 μg/m3 in January 2021 and the minimum value is 20.2 μg/m3 in April 2022. The decrease in P.M concentrations is probably due to the prevailing post-pandemic situation.

Keywords: Particulate matter, Dispersion, Pollution, Anthropogenic


  1. Guo H, Chang Z, Wu J, Li W. Air pollution and lung cancer incidence in China: Who are faced with a greater effect? Environment International. 2019;132:105077. Available from: https://doi.org/10.1016/j.envint.2019.105077
  2. Gupta A, Bherwani H, Gautam S, Anjum S, Musugu K, Kumar N, et al. Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models. Environment, Development and Sustainability. 2021;23(4):6408–6417. Available from: https://doi.org/10.1007/s10668-020-00878-9
  3. Bernstein JA, Alexis N, Barnes CN, Bernstein IL, Nel AL, Peden D, et al. Health effects of air pollution. Journal of Allergy and Clinical Immunology. 2004;114(5):1116–1123. Available from: https://doi.org/10.1016/j.jaci.2004.08.030
  4. Khallaf M., ed. The impact of air pollution on health, economy, environment and agricultural sources. (pp. 1-458) In Tech Publishing. 2011.
  5. Bian Y, Huang Z, Ou J, Zhong Z, Xu Y, Zhang Z, et al. Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015. Atmospheric Chemistry and Physics. 2019;19(18):11701–11719. Available from: https://doi.org/10.5194/acp-19-11701-2019
  6. Fujita EM, Campbell DE, Arnott WP, Johnson T, Ollison W. Concentrations of mobile source air pollutants in urban microenvironments. Journal of the Air & Waste Management Association. 2014;64(7):743–758. Available from: https://doi.org/10.1080/10962247.2013.872708
  7. Muhammad S, Long X, Salman M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Science of The Total Environment. 2020;728:1–5. Available from: https://doi.org/10.1016/j.scitotenv.2020.138820
  8. Kanniah KD, Zaman NAFK, Kaskaoutis DG, Latif MT. COVID-19's impact on the atmospheric environment in the Southeast Asia region. Science of The Total Environment. 2020;736:1–13. Available from: https://doi.org/10.1016/j.scitotenv.2020.139658
  9. Tobías A, Carnerero C, Reche C, Massagué J, Via M, Minguillón MC, et al. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of The Total Environment. 2020;726:1–4. Available from: https://doi.org/10.1016/j.scitotenv.2020.138540
  10. Lokhandwala S, Gautam P. Indirect impact of COVID-19 on environment: A brief study in Indian context. Environmental Research. 2020;188:1–10. Available from: https://doi.org/10.1016/j.envres.2020.109807
  11. Agarwal A, Kaushik A, Kumar S, Mishra RK. Comparative study on air quality status in Indian and Chinese cities before and during the COVID-19 lockdown period. Air Quality, Atmosphere & Health. 2020;13(10):1167–1178. Available from: https://doi.org/10.1007/s11869-020-00881-z
  12. Grace LK, Raliengoane TP. Effect of Covid-19 on air quality in Visakhapatnam-A comparative study. International Journal of Ecology and Environmental Sciences. 2021;3(3):102–105. Available from: https://www.ecologyjournal.in/archives/2021/vol3/issue3/3-3-22
  13. Wilson WE, Suh HH. Fine Particles and Coarse Particles: Concentration Relationships Relevant to Epidemiologic Studies. Journal of the Air & Waste Management Association. 1997;47(12):1238–1249. Available from: https://doi.org/10.1080/10473289.1997.10464074
  14. Particulate Matter (PM) Basics. EPA: US Environmental Protection Agency. Available from: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed )
  15. Cheung K, Daher N, Kam W, Shafer MM, Ning Z, Schauer JJ, et al. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmospheric Environment. 2011;45(16):2651–2662. Available from: https://doi.org/10.1016/j.atmosenv.2011.02.066
  16. Zhang L, Yang Y, Li Y, Qian Z(, Xiao W, Wang XW, et al. Short-term and long-term effects of PM2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. Science of The Total Environment. 2019;688:136–142. Available from: https://doi.org/10.1016/j.scitotenv.2019.05.470
  17. Kelishadi R, Poursafa P. Air pollution and non-respiratory health hazards for children. Archives of Medical Science. 2010;6(4):483–495. Available from: https://doi.org/10.5114/aoms.2010.14458
  18. Kappos AD, Bruckmann P, Eikmann T, Englert N, Heinrich U, Höppe P, et al. Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health. 2004;207(4):399–407. Available from: https://doi.org/10.1078/1438-4639-00306
  19. Boschi N. Defining an Educational Framework for Indoor Air Sciences Education. In: Education and Training in Indoor Air Sciences, NATO Science Series . (Vol. 60, pp. 3-6) Dordrecht, Netherlands. Springer. 1999.
  20. Oktorie O, Berd I. Spatial model of COVID 19 distribution based on differences an climate characteristics and environment of according to the earth latitude. Sumatra Journal of Disaster, Geography and Geography Education (SJDGGE). 2020;4(1):17–21. Available from: https://doi.org/10.24036/sjdgge.v4i1.322
  21. Barbosa C, Cowell AJ, Dowd WN. Alcohol Consumption in Response to the COVID-19 Pandemic in the United States. Journal of Addiction Medicine. 2021;15(4):341–344. Available from: https://doi.org/10.1097/adm.0000000000000767
  22. Lin B, Zhu J. Changes in urban air quality during urbanization in China. Journal of Cleaner Production. 2018;188:312–321. Available from: https://doi.org/10.1016/j.jclepro.2018.03.293
  23. Zhang H, Wang S, Hao J, Wang X, Wang S, Chai F, et al. Air pollution and control action in Beijing. Journal of Cleaner Production. 2016;112(2):1519–1527. Available from: https://doi.org/10.1016/j.jclepro.2015.04.092
  24. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health. 2020;8:1–13. Available from: https://doi.org/10.3389/fpubh.2020.00014
  25. Kan H, Chen R, Tong S. Ambient air pollution, climate change, and population health in China. Environment International. 2012;42:10–19. Available from: https://doi.org/10.1016/j.envint.2011.03.003
  26. Samek L, Stegowski Z, Styszko K, Furman L, Fiedor J. Seasonal contribution of assessed sources to submicron and fine particulate matter in a Central European urban area. Environmental Pollution. 2018;241:406–411. Available from: https://doi.org/10.1016/j.envpol.2018.05.082
  27. Jeong CH, Mcguire ML, Herod D, Dann T, Dabek–zlotorzynska E, Wang D, et al. Receptor model based identification of PM2.5 sources in Canadian cities. Atmospheric Pollution Research. 2011;2(2):158–171. Available from: https://doi.org/10.5094/APR.2011.021
  28. Ezeh GC, Obioh IB, Asubiojo OI, Abiye OE. PIXE characterization of PM10 and PM2.5 particulates sizes collected in Ikoyi Lagos, Nigeria. Toxicological & Environmental Chemistry. 2012;94(5):884–894. Available from: https://doi.org/10.1080/02772248.2012.674133
  29. Orok U. Contamination and health risk assessment of suspended particulate matter (SPM) in Uyo. Nigeria Journal of Scientific Research and Reports. 2015;6(4):276–286. Available from: https://doi.org/10.9734/JSRR/2015/16296
  30. Ma Y, Yang S, Zhou J, Yu Z, Zhou J. Effect of ambient air pollution on emergency room admissions for respiratory diseases in Beijing, China. Atmospheric Environment. 2018;191:320–327. Available from: https://doi.org/10.1016/j.atmosenv.2018.08.027
  31. Zhu F, Ding R, Lei R, Cheng H, Liu J, Shen C, et al. The short-term effects of air pollution on respiratory diseases and lung cancer mortality in Hefei: A time-series analysis. Respiratory Medicine. 2019;146:57–65. Available from: https://doi.org/10.1016/j.rmed.2018.11.019
  32. Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD. Long- and short-term exposure to PM2.5 and mortality using novel exposure models. Epidemiology. 2013;24(4):555–561. Available from: https://doi.org/10.1097/ede.0b013e318294beaa
  33. Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19’s Morbidity and Mortality. International Journal of Environmental Research and Public Health. 2020;17(12):1–20. Available from: https://doi.org/10.3390/ijerph17124487
  34. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525(7569):367–371. Available from: https://doi.org/10.1038/nature15371
  35. Lelieveld J, Klingmüller K, Pozzer A, Pöschl U, Fnais M, Daiber A, et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. European Heart Journal. 2019;40(20):1590–1596. Available from: https://doi.org/10.1093/eurheartj/ehz135
  36. Saud T, Gautam R, Mandal TK, Gadi R, Singh DP, Sharma SK, et al. Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmospheric Environment. 2012;61:212–220. Available from: https://doi.org/10.1016/j.atmosenv.2012.07.030
  37. Singh DP, Gadi R, Mandal TK, Saud T, Saxena M, Sharma SK. Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmospheric Environment. 2013;68:120–126. Available from: https://doi.org/10.1016/j.atmosenv.2012.11.042


© 2024 Kumar et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.